File size: 2,314 Bytes
5875608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0a273
5875608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0a273
 
5875608
8e0a273
 
5875608
8e0a273
 
5875608
8e0a273
5875608
 
8e0a273
 
 
 
5875608
8e0a273
5875608
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
from llama_cpp import Llama
from sql import get_table_schema


@st.cache_resource()
def load_llm(repo_id, filename):
    llm = Llama.from_pretrained(
        repo_id=repo_id,
        filename=filename,
        verbose=True,
        use_mmap=True,
        use_mlock=True,
        n_threads=4,
        n_threads_batch=4,
        n_ctx=8000,
    )
    print(f"{repo_id} loaded successfully. ✅")
    return llm


def generate_system_prompt(table_name, table_schema):
    """
    Generates a prompt to provide context about a table's schema for LLM to convert natural language to SQL.

    Args:
        table_name (str): The name of the table.
        table_schema (list): A list of tuples where each tuple contains information about the columns in the table.

    Returns:
        str: The generated prompt to be used by the LLM.
    """
    prompt = f"""You are an expert in writing SQL queries for relational databases. 
    You will be provided with a database schema and a natural 
    language question, and your task is to generate an accurate SQL query.
    
    The database has a table named '{table_name}' with the following schema:\n\n"""

    prompt += "Columns:\n"

    for col in table_schema:
        column_name = col[1]
        column_type = col[2]
        prompt += f"- {column_name} ({column_type})\n"

    prompt += "\nPlease generate a SQL query based on the following natural language question. ONLY return the SQL query."

    return prompt


# Streamed response emulator
def response_generator(llm, messages, question, table_name, db_name):
    table_schema = get_table_schema(db_name, table_name)
    llm_prompt = generate_system_prompt(table_name, table_schema)
    user_prompt = f"""Question: {question}"""

    print(messages, llm_prompt, user_prompt)
    history = [{"content": llm_prompt.format(table_name=table_name), "role": "system"}]

    for val in messages:
        history.append(val)

    history.append({"role": "user", "content": user_prompt})

    response = llm.create_chat_completion(
        messages=history,
        max_tokens=2048,
        temperature=0.7,
        top_p=0.95,
    )
    answer = response["choices"][0]["message"]["content"]

    query = answer.replace("```sql", "").replace("```", "")
    query = query.strip()
    return query