Spaces:
Running
on
Zero
Running
on
Zero
github-actions[bot]
commited on
Commit
·
bdc2933
1
Parent(s):
b399068
Sync with https://github.com/mozilla-ai/speech-to-text-finetune
Browse files
app.py
CHANGED
@@ -1,28 +1,22 @@
|
|
1 |
import os
|
2 |
-
from pathlib import Path
|
3 |
-
from typing import Tuple
|
4 |
import gradio as gr
|
|
|
5 |
from transformers import pipeline, Pipeline
|
6 |
-
from huggingface_hub import repo_exists
|
7 |
-
|
8 |
-
|
9 |
-
from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
|
10 |
|
11 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
12 |
-
languages = LANGUAGES_NAME_TO_ID.keys()
|
13 |
model_ids = [
|
14 |
"",
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"openai/whisper-
|
18 |
-
"openai/whisper-
|
19 |
-
"openai/whisper-
|
|
|
|
|
20 |
]
|
21 |
|
22 |
|
23 |
-
def _load_local_model(model_dir: str
|
24 |
-
if not Path(model_dir).is_dir():
|
25 |
-
return None, f"⚠️ Couldn't find local model directory: {model_dir}"
|
26 |
from transformers import (
|
27 |
WhisperProcessor,
|
28 |
WhisperTokenizer,
|
@@ -31,56 +25,53 @@ def _load_local_model(model_dir: str, language: str) -> Tuple[Pipeline | None, s
|
|
31 |
)
|
32 |
|
33 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
34 |
-
tokenizer = WhisperTokenizer.from_pretrained(
|
35 |
-
model_dir, language=language, task="transcribe"
|
36 |
-
)
|
37 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
38 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
-
def _load_hf_model(model_repo_id: str
|
50 |
-
|
51 |
-
return (
|
52 |
-
|
53 |
-
|
54 |
)
|
55 |
-
|
56 |
-
|
57 |
-
model=model_repo_id,
|
58 |
-
generate_kwargs={"language": language},
|
59 |
-
), f"✅ HF Model {model_repo_id} has been loaded."
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
66 |
-
|
67 |
-
|
68 |
elif hf_model_id and not local_model_id and not dropdown_model_id:
|
69 |
-
|
70 |
-
yield _load_hf_model(hf_model_id, language)
|
71 |
elif local_model_id and not hf_model_id and not dropdown_model_id:
|
72 |
-
|
73 |
-
yield _load_local_model(local_model_id, language)
|
74 |
else:
|
75 |
-
|
76 |
-
|
77 |
-
"️️⚠️ Please select or fill at least and only one of the options above",
|
78 |
)
|
79 |
-
if
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
|
84 |
text = pipe(audio)["text"]
|
85 |
return text
|
86 |
|
@@ -89,18 +80,12 @@ def setup_gradio_demo():
|
|
89 |
with gr.Blocks() as demo:
|
90 |
gr.Markdown(
|
91 |
""" # 🗣️ Speech-to-Text Transcription
|
92 |
-
### 1. Select
|
93 |
-
### 2.
|
94 |
-
### 3.
|
95 |
-
### 4. Record a message or upload an audio file.
|
96 |
-
### 5. Click Transcribe to see the transcription generated by the model.
|
97 |
"""
|
98 |
)
|
99 |
-
###
|
100 |
-
|
101 |
-
selected_lang = gr.Dropdown(
|
102 |
-
choices=list(languages), value=None, label="Select a language"
|
103 |
-
)
|
104 |
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
@@ -118,9 +103,6 @@ def setup_gradio_demo():
|
|
118 |
placeholder="artifacts/my-whisper-tiny",
|
119 |
)
|
120 |
|
121 |
-
load_model_button = gr.Button("Load model")
|
122 |
-
model_loaded = gr.Markdown()
|
123 |
-
|
124 |
### Transcription ###
|
125 |
audio_input = gr.Audio(
|
126 |
sources=["microphone", "upload"],
|
@@ -132,16 +114,10 @@ def setup_gradio_demo():
|
|
132 |
transcribe_button = gr.Button("Transcribe")
|
133 |
transcribe_output = gr.Text(label="Output")
|
134 |
|
135 |
-
### Event listeners ###
|
136 |
-
model = gr.State()
|
137 |
-
load_model_button.click(
|
138 |
-
fn=load_model,
|
139 |
-
inputs=[selected_lang, dropdown_model, user_model, local_model],
|
140 |
-
outputs=[model, model_loaded],
|
141 |
-
)
|
142 |
-
|
143 |
transcribe_button.click(
|
144 |
-
fn=transcribe,
|
|
|
|
|
145 |
)
|
146 |
|
147 |
demo.launch()
|
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import spaces
|
4 |
from transformers import pipeline, Pipeline
|
|
|
|
|
|
|
|
|
5 |
|
6 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
|
|
7 |
model_ids = [
|
8 |
"",
|
9 |
+
"mozilla-ai/whisper-small-gl (Galician)",
|
10 |
+
"mozilla-ai/whisper-small-el (Greek)",
|
11 |
+
"openai/whisper-tiny (Multilingual)",
|
12 |
+
"openai/whisper-small (Multilingual)",
|
13 |
+
"openai/whisper-medium (Multilingual)",
|
14 |
+
"openai/whisper-large-v3 (Multilingual)",
|
15 |
+
"openai/whisper-large-v3-turbo (Multilingual)",
|
16 |
]
|
17 |
|
18 |
|
19 |
+
def _load_local_model(model_dir: str) -> Pipeline:
|
|
|
|
|
20 |
from transformers import (
|
21 |
WhisperProcessor,
|
22 |
WhisperTokenizer,
|
|
|
25 |
)
|
26 |
|
27 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
28 |
+
tokenizer = WhisperTokenizer.from_pretrained(model_dir, task="transcribe")
|
|
|
|
|
29 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
30 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
31 |
|
32 |
+
try:
|
33 |
+
return pipeline(
|
34 |
+
task="automatic-speech-recognition",
|
35 |
+
model=model,
|
36 |
+
processor=processor,
|
37 |
+
tokenizer=tokenizer,
|
38 |
+
feature_extractor=feature_extractor,
|
39 |
+
)
|
40 |
+
except Exception as e:
|
41 |
+
return str(e)
|
42 |
|
43 |
|
44 |
+
def _load_hf_model(model_repo_id: str) -> Pipeline:
|
45 |
+
try:
|
46 |
+
return pipeline(
|
47 |
+
"automatic-speech-recognition",
|
48 |
+
model=model_repo_id,
|
49 |
)
|
50 |
+
except Exception as e:
|
51 |
+
return str(e)
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
+
@spaces.GPU(duration=30)
|
55 |
+
def transcribe(
|
56 |
+
dropdown_model_id: str,
|
57 |
+
hf_model_id: str,
|
58 |
+
local_model_id: str,
|
59 |
+
audio: gr.Audio,
|
60 |
+
) -> str:
|
61 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
62 |
+
dropdown_model_id = dropdown_model_id.split(" (")[0]
|
63 |
+
pipe = _load_hf_model(dropdown_model_id)
|
64 |
elif hf_model_id and not local_model_id and not dropdown_model_id:
|
65 |
+
pipe = _load_hf_model(hf_model_id)
|
|
|
66 |
elif local_model_id and not hf_model_id and not dropdown_model_id:
|
67 |
+
pipe = _load_local_model(local_model_id)
|
|
|
68 |
else:
|
69 |
+
return (
|
70 |
+
"⚠️ Error: Please select or fill at least and only one of the options above"
|
|
|
71 |
)
|
72 |
+
if isinstance(pipe, str):
|
73 |
+
# Exception raised when loading
|
74 |
+
return f"⚠️ Error: {pipe}"
|
|
|
|
|
75 |
text = pipe(audio)["text"]
|
76 |
return text
|
77 |
|
|
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown(
|
82 |
""" # 🗣️ Speech-to-Text Transcription
|
83 |
+
### 1. Select which model to use from one of the options below.
|
84 |
+
### 2. Record a message or upload an audio file.
|
85 |
+
### 3. Click Transcribe to see the transcription generated by the model.
|
|
|
|
|
86 |
"""
|
87 |
)
|
88 |
+
### Model selection ###
|
|
|
|
|
|
|
|
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Column():
|
|
|
103 |
placeholder="artifacts/my-whisper-tiny",
|
104 |
)
|
105 |
|
|
|
|
|
|
|
106 |
### Transcription ###
|
107 |
audio_input = gr.Audio(
|
108 |
sources=["microphone", "upload"],
|
|
|
114 |
transcribe_button = gr.Button("Transcribe")
|
115 |
transcribe_output = gr.Text(label="Output")
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
transcribe_button.click(
|
118 |
+
fn=transcribe,
|
119 |
+
inputs=[dropdown_model, user_model, local_model, audio_input],
|
120 |
+
outputs=transcribe_output,
|
121 |
)
|
122 |
|
123 |
demo.launch()
|