File size: 6,989 Bytes
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce83b17
98b27a0
d93aca0
98b27a0
d93aca0
 
3a3100a
d93aca0
 
 
ce83b17
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce83b17
d93aca0
 
 
 
 
 
 
 
 
 
 
ce83b17
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
3a3100a
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d0f24
ce83b17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2025 SparkAudio
#               2025 Xinsheng Wang (w.xinshawn@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
import soundfile as sf
import logging
import gradio as gr
from datetime import datetime
from cli.SparkTTS import SparkTTS
from sparktts.utils.token_parser import LEVELS_MAP_UI
import spaces
from huggingface_hub import snapshot_download

def initialize_model(model_dir=snapshot_download("SparkAudio/Spark-TTS-0.5B"), device=0):
    """Load the model once at the beginning."""
    logging.info(f"Loading model from: {model_dir}")
    device = torch.device("cuda")
    model = SparkTTS(model_dir, device)
    return model

@spaces.GPU
def run_tts(
    text,
    model,
    prompt_text=None,
    prompt_speech=None,
    gender=None,
    pitch=None,
    speed=None,
    save_dir="example/results",
):
    """Perform TTS inference and save the generated audio."""
    logging.info(f"Saving audio to: {save_dir}")

    if prompt_text is not None:
        prompt_text = None if len(prompt_text) <= 1 else prompt_text

    # Ensure the save directory exists
    os.makedirs(save_dir, exist_ok=True)

    # Generate unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
    save_path = os.path.join(save_dir, f"{timestamp}.wav")

    logging.info("Starting inference...")

    # Perform inference and save the output audio
    with torch.no_grad():
        wav = model.inference(
            text,
            prompt_speech,
            prompt_text,
            gender,
            pitch,
            speed,
        )

        sf.write(save_path, wav, samplerate=16000)

    logging.info(f"Audio saved at: {save_path}")

    return save_path, model  # Return model along with audio path

@spaces.GPU
def voice_clone(text, model, prompt_text, prompt_wav_upload, prompt_wav_record):
    """Gradio interface for TTS with prompt speech input."""
    # Determine prompt speech (from audio file or recording)
    prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
    prompt_text = None if len(prompt_text) < 2 else prompt_text
    audio_output_path, model = run_tts(
        text, model, prompt_text=prompt_text, prompt_speech=prompt_speech
    )

    return audio_output_path, model

@spaces.GPU
def voice_creation(text, model, gender, pitch, speed):
    """Gradio interface for TTS with control over voice attributes."""
    pitch = LEVELS_MAP_UI[int(pitch)]
    speed = LEVELS_MAP_UI[int(speed)]
    audio_output_path, model = run_tts(
        text, model, gender=gender, pitch=pitch, speed=speed
    )
    return audio_output_path, model


def build_ui(model_dir, device=0):
    with gr.Blocks() as demo:
        # Initialize model
        model = initialize_model(model_dir, device="cuda")
        # Use HTML for centered title
        gr.HTML('<h1 style="text-align: center;">Spark-TTS by SparkAudio</h1>')
        with gr.Tabs():
            # Voice Clone Tab
            with gr.TabItem("Voice Clone"):
                gr.Markdown(
                    "### Upload reference audio or recording (上传参考音频或者录音)"
                )

                with gr.Row():
                    prompt_wav_upload = gr.Audio(
                        sources="upload",
                        type="filepath",
                        label="Choose the prompt audio file, ensuring the sampling rate is no lower than 16kHz.",
                    )
                    prompt_wav_record = gr.Audio(
                        sources="microphone",
                        type="filepath",
                        label="Record the prompt audio file.",
                    )

                with gr.Row():
                    text_input = gr.Textbox(
                        label="Text", lines=3, placeholder="Enter text here"
                    )
                    prompt_text_input = gr.Textbox(
                        label="Text of prompt speech (Optional; recommended for cloning in the same language.)",
                        lines=3,
                        placeholder="Enter text of the prompt speech.",
                    )

                audio_output = gr.Audio(
                    label="Generated Audio", autoplay=True, streaming=True
                )

                generate_buttom_clone = gr.Button("Generate")

                generate_buttom_clone.click(
                    voice_clone,
                    inputs=[
                        text_input,
                        gr.State(model),
                        prompt_text_input,
                        prompt_wav_upload,
                        prompt_wav_record,
                    ],
                    outputs=[audio_output, gr.State(model)],
                )

            # Voice Creation Tab
            with gr.TabItem("Voice Creation"):
                gr.Markdown(
                    "### Create your own voice based on the following parameters"
                )

                with gr.Row():
                    with gr.Column():
                        gender = gr.Radio(
                            choices=["male", "female"], value="male", label="Gender"
                        )
                        pitch = gr.Slider(
                            minimum=1, maximum=5, step=1, value=3, label="Pitch"
                        )
                        speed = gr.Slider(
                            minimum=1, maximum=5, step=1, value=3, label="Speed"
                        )
                    with gr.Column():
                        text_input_creation = gr.Textbox(
                            label="Input Text",
                            lines=3,
                            placeholder="Enter text here",
                            value="You can generate a customized voice by adjusting parameters such as pitch and speed.",
                        )
                        create_button = gr.Button("Create Voice")

                audio_output = gr.Audio(
                    label="Generated Audio", autoplay=True, streaming=True
                )
                create_button.click(
                    voice_creation,
                    inputs=[text_input_creation, gr.State(model), gender, pitch, speed],
                    outputs=[audio_output, gr.State(model)],
                )

    return demo


if __name__ == "__main__":
    demo = build_ui(model_dir=snapshot_download("SparkAudio/Spark-TTS-0.5B"), device=0)
    demo.queue().launch()