File size: 7,502 Bytes
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
Code adapted from Jax version in Appendix A.1
"""

from __future__ import annotations
from functools import wraps, partial
from contextlib import nullcontext
from typing import List, Tuple

import torch
import torch.nn as nn
from torch.nn import Module
from torch import Tensor, int32
from torch.amp import autocast

from einops import rearrange, pack, unpack

# helper functions


def exists(v):
    return v is not None


def default(*args):
    for arg in args:
        if exists(arg):
            return arg
    return None


def maybe(fn):
    @wraps(fn)
    def inner(x, *args, **kwargs):
        if not exists(x):
            return x
        return fn(x, *args, **kwargs)

    return inner


def pack_one(t, pattern):
    return pack([t], pattern)


def unpack_one(t, ps, pattern):
    return unpack(t, ps, pattern)[0]


# tensor helpers


def round_ste(z: Tensor) -> Tensor:
    """Round with straight through gradients."""
    zhat = z.round()
    return z + (zhat - z).detach()


# main class


class FSQ(Module):
    def __init__(
        self,
        levels: List[int],
        dim: int | None = None,
        num_codebooks=1,
        keep_num_codebooks_dim: bool | None = None,
        scale: float | None = None,
        allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
        channel_first: bool = False,
        projection_has_bias: bool = True,
        return_indices=True,
        force_quantization_f32=True,
    ):
        super().__init__()
        _levels = torch.tensor(levels, dtype=int32)
        self.register_buffer("_levels", _levels, persistent=False)

        _basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
        self.register_buffer("_basis", _basis, persistent=False)

        self.scale = scale

        codebook_dim = len(levels)
        self.codebook_dim = codebook_dim

        effective_codebook_dim = codebook_dim * num_codebooks
        self.num_codebooks = num_codebooks
        self.effective_codebook_dim = effective_codebook_dim

        keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
        assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
        self.keep_num_codebooks_dim = keep_num_codebooks_dim

        self.dim = default(dim, len(_levels) * num_codebooks)

        self.channel_first = channel_first

        has_projections = self.dim != effective_codebook_dim
        self.project_in = (
            nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
            if has_projections
            else nn.Identity()
        )
        self.project_out = (
            nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
            if has_projections
            else nn.Identity()
        )

        self.has_projections = has_projections

        self.return_indices = return_indices
        if return_indices:
            self.codebook_size = self._levels.prod().item()
            implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
            self.register_buffer(
                "implicit_codebook", implicit_codebook, persistent=False
            )

        self.allowed_dtypes = allowed_dtypes
        self.force_quantization_f32 = force_quantization_f32

    def bound(self, z, eps: float = 1e-3):
        """Bound `z`, an array of shape (..., d)."""
        half_l = (self._levels - 1) * (1 + eps) / 2
        offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
        shift = (offset / half_l).atanh()
        return (z + shift).tanh() * half_l - offset

    def quantize(self, z):
        """Quantizes z, returns quantized zhat, same shape as z."""
        quantized = round_ste(self.bound(z))
        half_width = self._levels // 2  # Renormalize to [-1, 1].
        return quantized / half_width

    def _scale_and_shift(self, zhat_normalized):
        half_width = self._levels // 2
        return (zhat_normalized * half_width) + half_width

    def _scale_and_shift_inverse(self, zhat):
        half_width = self._levels // 2
        return (zhat - half_width) / half_width

    def _indices_to_codes(self, indices):
        level_indices = self.indices_to_level_indices(indices)
        codes = self._scale_and_shift_inverse(level_indices)
        return codes

    def codes_to_indices(self, zhat):
        """Converts a `code` to an index in the codebook."""
        assert zhat.shape[-1] == self.codebook_dim
        zhat = self._scale_and_shift(zhat)
        return (zhat * self._basis).sum(dim=-1).to(int32)

    def indices_to_level_indices(self, indices):
        """Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
        indices = rearrange(indices, "... -> ... 1")
        codes_non_centered = (indices // self._basis) % self._levels
        return codes_non_centered

    def indices_to_codes(self, indices):
        """Inverse of `codes_to_indices`."""
        assert exists(indices)

        is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))

        codes = self._indices_to_codes(indices)

        if self.keep_num_codebooks_dim:
            codes = rearrange(codes, "... c d -> ... (c d)")

        codes = self.project_out(codes)

        if is_img_or_video or self.channel_first:
            codes = rearrange(codes, "b ... d -> b d ...")

        return codes

    def forward(self, z):
        """
        einstein notation
        b - batch
        n - sequence (or flattened spatial dimensions)
        d - feature dimension
        c - number of codebook dim
        """

        is_img_or_video = z.ndim >= 4
        need_move_channel_last = is_img_or_video or self.channel_first

        # standardize image or video into (batch, seq, dimension)

        if need_move_channel_last:
            z = rearrange(z, "b d ... -> b ... d")
            z, ps = pack_one(z, "b * d")

        assert (
            z.shape[-1] == self.dim
        ), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"

        z = self.project_in(z)

        z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)

        # whether to force quantization step to be full precision or not

        force_f32 = self.force_quantization_f32
        quantization_context = (
            partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
        )

        with quantization_context():
            orig_dtype = z.dtype

            if force_f32 and orig_dtype not in self.allowed_dtypes:
                z = z.float()

            codes = self.quantize(z)

            # returning indices could be optional

            indices = None

            if self.return_indices:
                indices = self.codes_to_indices(codes)

            codes = rearrange(codes, "b n c d -> b n (c d)")

            codes = codes.type(orig_dtype)

        # project out

        out = self.project_out(codes)

        # reconstitute image or video dimensions

        if need_move_channel_last:
            out = unpack_one(out, ps, "b * d")
            out = rearrange(out, "b ... d -> b d ...")

            indices = maybe(unpack_one)(indices, ps, "b * c")

        if not self.keep_num_codebooks_dim and self.return_indices:
            indices = maybe(rearrange)(indices, "... 1 -> ...")

        # return quantized output and indices

        return out, indices