File size: 5,176 Bytes
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
TASK_TOKEN_MAP = {
    "vc": "<|task_vc|>",
    "tts": "<|task_tts|>",
    "asr": "<|task_asr|>",
    "s2s": "<|task_s2s|>",
    "t2s": "<|task_t2s|>",
    "understand": "<|task_understand|>",
    "caption": "<|task_cap|>",
    "controllable_tts": "<|task_controllable_tts|>",
    "prompt_tts": "<|task_prompt_tts|>",
    "speech_edit": "<|task_edit|>",
}

LEVELS_MAP = {
    "very_low": 0,
    "low": 1,
    "moderate": 2,
    "high": 3,
    "very_high": 4,
}

LEVELS_MAP_UI = {
    1: 'very_low',
    2: 'low',
    3: 'moderate',
    4: 'high',
    5: 'very_high'
}

GENDER_MAP = {
    "female": 0,
    "male": 1,
}

AGE_MAP = {"Child": 0, "Teenager": 1, "Youth-Adult": 2, "Middle-aged": 3, "Elderly": 4}

EMO_MAP = {
    "UNKNOWN": 0,
    "NEUTRAL": 1,
    "ANGRY": 2,
    "HAPPY": 3,
    "SAD": 4,
    "FEARFUL": 5,
    "DISGUSTED": 6,
    "SURPRISED": 7,
    "SARCASTIC": 8,
    "EXCITED": 9,
    "SLEEPY": 10,
    "CONFUSED": 11,
    "EMPHASIS": 12,
    "LAUGHING": 13,
    "SINGING": 14,
    "WORRIED": 15,
    "WHISPER": 16,
    "ANXIOUS": 17,
    "NO-AGREEMENT": 18,
    "APOLOGETIC": 19,
    "CONCERNED": 20,
    "ENUNCIATED": 21,
    "ASSERTIVE": 22,
    "ENCOURAGING": 23,
    "CONTEMPT": 24,
}


class TokenParser:
    """Turn label to special token"""

    def __init__(self):
        pass

    """Parse the attributes of a person."""

    def __init__(self):
        pass

    @staticmethod
    def age(age: str) -> str:
        """Turn age token."""
        age_id = AGE_MAP[age]
        return f"<|age_{age_id}|>"

    @staticmethod
    def gender(gender: str) -> str:
        """Turn gender token."""
        gender_id = GENDER_MAP[gender]
        return f"<|gender_{gender_id}|>"

    @staticmethod
    def mel_value(mel: int):
        """Turn special token of mel scale pitch."""
        mel = max(0, int(mel))
        mel = min(1000, int(mel))
        return f"<|pitch_value_{mel}|>"

    @staticmethod
    def mel_level(level: str):
        """Turn special token of mel level."""
        level_tag = LEVELS_MAP[level]
        return f"<|pitch_label_{level_tag}|>"

    @staticmethod
    def pitch_var_value(pitch_std: int):
        """Turn special token of pitch_std value."""
        assert isinstance(pitch_std, int)
        pitch_std = max(0, int(pitch_std))
        pitch_std = min(10, int(pitch_std))
        return f"<|pitch_var_value_{pitch_std}|>"

    @staticmethod
    def pitch_var_level(level: str):
        """Turn special token of pitch std level."""
        level_tag = LEVELS_MAP[level]
        return f"<|pitch_var_label_{level_tag}|>"

    @staticmethod
    def loudness_value(loudness: int):
        """Turn special toak of loudness value [0, 30]"""
        assert loudness >= 0
        loudness = max(0, int(loudness))
        loudness = min(30, int(loudness))
        return f"<|loudness_value_{loudness}|>"

    @staticmethod
    def loudness_level(level: str):
        """Turn special token of loudness level."""
        level_tag = LEVELS_MAP[level]
        return f"<|loudness_label_{level_tag}|>"

    @staticmethod
    def speed_value(speed: int):
        """Turn special token of speed value."""
        speed = max(0, int(speed))
        speed = min(10, int(speed))
        return f"<|speed_value_{speed}|>"

    @staticmethod
    def speed_level(level: str):
        """Turn special token of speed level."""
        level_tag = LEVELS_MAP[level]
        return f"<|speed_label_{level_tag}|>"

    @staticmethod
    def task(task: str) -> str:
        """Turn special token of task."""
        assert task in TASK_TOKEN_MAP.keys()

        return TASK_TOKEN_MAP[task]

    @staticmethod
    def emotion(emotion: str):
        emo_id = EMO_MAP[emotion]

        return f"<|emotion_{emo_id}|>"


# test
if __name__ == "__main__":
    from transformers import AutoTokenizer

    tokenizer = AutoTokenizer.from_pretrained(
        "/aifs4su/xinshengwang/code/StyleCraft/tokenizer/stylecraft-bicodec-pitch-loudness-speed-emotion-tokenizer"
    )

    tasks = ["tts", "tts", "understand", "controllable_tts", "prompt_tts"]
    ages = ["Child", "Teenager", "Youth-Adult", "Middle-aged", "Elderly"]
    genders = ["female", "female", "female", "male", "male"]
    mels = [100, 200, 300, 400, 500]
    mel_levels = ["very_low", "low", "moderate", "high", "very_high"]
    loudnesses = [1, 10, 23, 19, 30]
    loudness_levels = ["very_low", "low", "moderate", "high", "very_high"]
    emotions = ["UNKNOWN", "NEUTRAL", "ANGRY", "HAPPY", "SAD"]

    for i in range(5):
        task = TokenParser.task(tasks[i])
        age = TokenParser.age(ages[i])
        gender = TokenParser.gender(genders[i])
        mel = TokenParser.mel_value(mels[i])
        mel_level = TokenParser.mel_level(mel_levels[i])
        loudness = TokenParser.loudness_value(loudnesses[i])
        loudness_level = TokenParser.loudness_level(loudness_levels[i])
        emotion = TokenParser.emotion(emotions[i])
        inputs = [task, age, gender, mel, mel_level, loudness, loudness_level, emotion]
        inputs = "".join(inputs)
        ids = tokenizer.encode(inputs, add_special_tokens=False)
        print(ids)
        print("decode", tokenizer.decode(ids))