File size: 8,110 Bytes
d93aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2025 SparkAudio
#               2025 Xinsheng Wang (w.xinshawn@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import torch
from typing import Tuple
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM

from sparktts.utils.file import load_config
from sparktts.models.audio_tokenizer import BiCodecTokenizer
from sparktts.utils.token_parser import LEVELS_MAP, GENDER_MAP, TASK_TOKEN_MAP


class SparkTTS:
    """
    Spark-TTS for text-to-speech generation.
    """

    def __init__(self, model_dir: Path, device: torch.device = torch.device("cuda:0")):
        """
        Initializes the SparkTTS model with the provided configurations and device.

        Args:
            model_dir (Path): Directory containing the model and config files.
            device (torch.device): The device (CPU/GPU) to run the model on.
        """
        self.device = device
        self.model_dir = model_dir
        self.configs = load_config(f"{model_dir}/config.yaml")
        self.sample_rate = self.configs["sample_rate"]
        self._initialize_inference()

    def _initialize_inference(self):
        """Initializes the tokenizer, model, and audio tokenizer for inference."""
        self.tokenizer = AutoTokenizer.from_pretrained(f"{self.model_dir}/LLM")
        self.model = AutoModelForCausalLM.from_pretrained(f"{self.model_dir}/LLM")
        self.audio_tokenizer = BiCodecTokenizer(self.model_dir, device=self.device)
        self.model.to(self.device)

    def process_prompt(
        self,
        text: str,
        prompt_speech_path: Path,
        prompt_text: str = None,
    ) -> Tuple[str, torch.Tensor]:
        """
        Process input for voice cloning.

        Args:
            text (str): The text input to be converted to speech.
            prompt_speech_path (Path): Path to the audio file used as a prompt.
            prompt_text (str, optional): Transcript of the prompt audio.

        Return:
            Tuple[str, torch.Tensor]: Input prompt; global tokens
        """

        global_token_ids, semantic_token_ids = self.audio_tokenizer.tokenize(
            prompt_speech_path
        )
        global_tokens = "".join(
            [f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()]
        )

        # Prepare the input tokens for the model
        if prompt_text is not None:
            semantic_tokens = "".join(
                [f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()]
            )
            inputs = [
                TASK_TOKEN_MAP["tts"],
                "<|start_content|>",
                prompt_text,
                text,
                "<|end_content|>",
                "<|start_global_token|>",
                global_tokens,
                "<|end_global_token|>",
                "<|start_semantic_token|>",
                semantic_tokens,
            ]
        else:
            inputs = [
                TASK_TOKEN_MAP["tts"],
                "<|start_content|>",
                text,
                "<|end_content|>",
                "<|start_global_token|>",
                global_tokens,
                "<|end_global_token|>",
            ]

        inputs = "".join(inputs)

        return inputs, global_token_ids

    def process_prompt_control(
        self,
        gender: str,
        pitch: str,
        speed: str,
        text: str,
    ):
        """
        Process input for voice creation.

        Args:
            gender (str): female | male.
            pitch (str): very_low | low | moderate | high | very_high
            speed (str): very_low | low | moderate | high | very_high
            text (str): The text input to be converted to speech.

        Return:
            str: Input prompt
        """
        assert gender in GENDER_MAP.keys()
        assert pitch in LEVELS_MAP.keys()
        assert speed in LEVELS_MAP.keys()

        gender_id = GENDER_MAP[gender]
        pitch_level_id = LEVELS_MAP[pitch]
        speed_level_id = LEVELS_MAP[speed]

        pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>"
        speed_label_tokens = f"<|speed_label_{speed_level_id}|>"
        gender_tokens = f"<|gender_{gender_id}|>"

        attribte_tokens = "".join(
            [gender_tokens, pitch_label_tokens, speed_label_tokens]
        )

        control_tts_inputs = [
            TASK_TOKEN_MAP["controllable_tts"],
            "<|start_content|>",
            text,
            "<|end_content|>",
            "<|start_style_label|>",
            attribte_tokens,
            "<|end_style_label|>",
        ]

        return "".join(control_tts_inputs)

    @torch.no_grad()
    def inference(
        self,
        text: str,
        prompt_speech_path: Path = None,
        prompt_text: str = None,
        gender: str = None,
        pitch: str = None,
        speed: str = None,
        temperature: float = 0.8,
        top_k: float = 50,
        top_p: float = 0.95,
    ) -> torch.Tensor:
        """
        Performs inference to generate speech from text, incorporating prompt audio and/or text.

        Args:
            text (str): The text input to be converted to speech.
            prompt_speech_path (Path): Path to the audio file used as a prompt.
            prompt_text (str, optional): Transcript of the prompt audio.
            gender (str): female | male.
            pitch (str): very_low | low | moderate | high | very_high
            speed (str): very_low | low | moderate | high | very_high
            temperature (float, optional): Sampling temperature for controlling randomness. Default is 0.8.
            top_k (float, optional): Top-k sampling parameter. Default is 50.
            top_p (float, optional): Top-p (nucleus) sampling parameter. Default is 0.95.

        Returns:
            torch.Tensor: Generated waveform as a tensor.
        """
        if gender is not None:
            prompt = self.process_prompt_control(gender, pitch, speed, text)

        else:
            prompt, global_token_ids = self.process_prompt(
                text, prompt_speech_path, prompt_text
            )
        model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device)

        # Generate speech using the model
        generated_ids = self.model.generate(
            **model_inputs,
            max_new_tokens=3000,
            do_sample=True,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
        )

        # Trim the output tokens to remove the input tokens
        generated_ids = [
            output_ids[len(input_ids) :]
            for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        # Decode the generated tokens into text
        predicts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

        # Extract semantic token IDs from the generated text
        pred_semantic_ids = (
            torch.tensor([int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicts)])
            .long()
            .unsqueeze(0)
        )

        if gender is not None:
            global_token_ids = (
                torch.tensor([int(token) for token in re.findall(r"bicodec_global_(\d+)", predicts)])
                .long()
                .unsqueeze(0)
                .unsqueeze(0)
            )

        # Convert semantic tokens back to waveform
        wav = self.audio_tokenizer.detokenize(
            global_token_ids.to(self.device).squeeze(0),
            pred_semantic_ids.to(self.device),
        )

        return wav