Spaces:
Runtime error
Runtime error
File size: 8,110 Bytes
d93aca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright (c) 2025 SparkAudio
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import torch
from typing import Tuple
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
from sparktts.utils.file import load_config
from sparktts.models.audio_tokenizer import BiCodecTokenizer
from sparktts.utils.token_parser import LEVELS_MAP, GENDER_MAP, TASK_TOKEN_MAP
class SparkTTS:
"""
Spark-TTS for text-to-speech generation.
"""
def __init__(self, model_dir: Path, device: torch.device = torch.device("cuda:0")):
"""
Initializes the SparkTTS model with the provided configurations and device.
Args:
model_dir (Path): Directory containing the model and config files.
device (torch.device): The device (CPU/GPU) to run the model on.
"""
self.device = device
self.model_dir = model_dir
self.configs = load_config(f"{model_dir}/config.yaml")
self.sample_rate = self.configs["sample_rate"]
self._initialize_inference()
def _initialize_inference(self):
"""Initializes the tokenizer, model, and audio tokenizer for inference."""
self.tokenizer = AutoTokenizer.from_pretrained(f"{self.model_dir}/LLM")
self.model = AutoModelForCausalLM.from_pretrained(f"{self.model_dir}/LLM")
self.audio_tokenizer = BiCodecTokenizer(self.model_dir, device=self.device)
self.model.to(self.device)
def process_prompt(
self,
text: str,
prompt_speech_path: Path,
prompt_text: str = None,
) -> Tuple[str, torch.Tensor]:
"""
Process input for voice cloning.
Args:
text (str): The text input to be converted to speech.
prompt_speech_path (Path): Path to the audio file used as a prompt.
prompt_text (str, optional): Transcript of the prompt audio.
Return:
Tuple[str, torch.Tensor]: Input prompt; global tokens
"""
global_token_ids, semantic_token_ids = self.audio_tokenizer.tokenize(
prompt_speech_path
)
global_tokens = "".join(
[f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()]
)
# Prepare the input tokens for the model
if prompt_text is not None:
semantic_tokens = "".join(
[f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()]
)
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
prompt_text,
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
"<|start_semantic_token|>",
semantic_tokens,
]
else:
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
]
inputs = "".join(inputs)
return inputs, global_token_ids
def process_prompt_control(
self,
gender: str,
pitch: str,
speed: str,
text: str,
):
"""
Process input for voice creation.
Args:
gender (str): female | male.
pitch (str): very_low | low | moderate | high | very_high
speed (str): very_low | low | moderate | high | very_high
text (str): The text input to be converted to speech.
Return:
str: Input prompt
"""
assert gender in GENDER_MAP.keys()
assert pitch in LEVELS_MAP.keys()
assert speed in LEVELS_MAP.keys()
gender_id = GENDER_MAP[gender]
pitch_level_id = LEVELS_MAP[pitch]
speed_level_id = LEVELS_MAP[speed]
pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>"
speed_label_tokens = f"<|speed_label_{speed_level_id}|>"
gender_tokens = f"<|gender_{gender_id}|>"
attribte_tokens = "".join(
[gender_tokens, pitch_label_tokens, speed_label_tokens]
)
control_tts_inputs = [
TASK_TOKEN_MAP["controllable_tts"],
"<|start_content|>",
text,
"<|end_content|>",
"<|start_style_label|>",
attribte_tokens,
"<|end_style_label|>",
]
return "".join(control_tts_inputs)
@torch.no_grad()
def inference(
self,
text: str,
prompt_speech_path: Path = None,
prompt_text: str = None,
gender: str = None,
pitch: str = None,
speed: str = None,
temperature: float = 0.8,
top_k: float = 50,
top_p: float = 0.95,
) -> torch.Tensor:
"""
Performs inference to generate speech from text, incorporating prompt audio and/or text.
Args:
text (str): The text input to be converted to speech.
prompt_speech_path (Path): Path to the audio file used as a prompt.
prompt_text (str, optional): Transcript of the prompt audio.
gender (str): female | male.
pitch (str): very_low | low | moderate | high | very_high
speed (str): very_low | low | moderate | high | very_high
temperature (float, optional): Sampling temperature for controlling randomness. Default is 0.8.
top_k (float, optional): Top-k sampling parameter. Default is 50.
top_p (float, optional): Top-p (nucleus) sampling parameter. Default is 0.95.
Returns:
torch.Tensor: Generated waveform as a tensor.
"""
if gender is not None:
prompt = self.process_prompt_control(gender, pitch, speed, text)
else:
prompt, global_token_ids = self.process_prompt(
text, prompt_speech_path, prompt_text
)
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device)
# Generate speech using the model
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=3000,
do_sample=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)
# Trim the output tokens to remove the input tokens
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# Decode the generated tokens into text
predicts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Extract semantic token IDs from the generated text
pred_semantic_ids = (
torch.tensor([int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicts)])
.long()
.unsqueeze(0)
)
if gender is not None:
global_token_ids = (
torch.tensor([int(token) for token in re.findall(r"bicodec_global_(\d+)", predicts)])
.long()
.unsqueeze(0)
.unsqueeze(0)
)
# Convert semantic tokens back to waveform
wav = self.audio_tokenizer.detokenize(
global_token_ids.to(self.device).squeeze(0),
pred_semantic_ids.to(self.device),
)
return wav |