Spaces:
Runtime error
Runtime error
# Copyright (c) 2025 SparkAudio | |
# 2025 Xinsheng Wang (w.xinshawn@gmail.com) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from typing import Tuple | |
from torch.nn.utils import weight_norm, remove_weight_norm | |
from typing import Optional | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
Args: | |
dim (int): Number of input channels. | |
intermediate_dim (int): Dimensionality of the intermediate layer. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional LayerNorm. Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
layer_scale_init_value: float, | |
condition_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d( | |
dim, dim, kernel_size=7, padding=3, groups=dim | |
) # depthwise conv | |
self.adanorm = condition_dim is not None | |
if condition_dim: | |
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, intermediate_dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
if self.adanorm: | |
assert cond_embedding_id is not None | |
x = self.norm(x, cond_embedding_id) | |
else: | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
x = residual + x | |
return x | |
class AdaLayerNorm(nn.Module): | |
""" | |
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes | |
Args: | |
condition_dim (int): Dimension of the condition. | |
embedding_dim (int): Dimension of the embeddings. | |
""" | |
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.dim = embedding_dim | |
self.scale = nn.Linear(condition_dim, embedding_dim) | |
self.shift = nn.Linear(condition_dim, embedding_dim) | |
torch.nn.init.ones_(self.scale.weight) | |
torch.nn.init.zeros_(self.shift.weight) | |
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor: | |
scale = self.scale(cond_embedding) | |
shift = self.shift(cond_embedding) | |
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) | |
x = x * scale.unsqueeze(1) + shift.unsqueeze(1) | |
return x | |
class ResBlock1(nn.Module): | |
""" | |
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, | |
but without upsampling layers. | |
Args: | |
dim (int): Number of input channels. | |
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. | |
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. | |
Defaults to (1, 3, 5). | |
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. | |
Defaults to 0.1. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
kernel_size: int = 3, | |
dilation: Tuple[int, int, int] = (1, 3, 5), | |
lrelu_slope: float = 0.1, | |
layer_scale_init_value: Optional[float] = None, | |
): | |
super().__init__() | |
self.lrelu_slope = lrelu_slope | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=self.get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=self.get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=self.get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.gamma = nn.ParameterList( | |
[ | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
] | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): | |
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) | |
xt = c1(xt) | |
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) | |
xt = c2(xt) | |
if gamma is not None: | |
xt = gamma * xt | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
def get_padding(kernel_size: int, dilation: int = 1) -> int: | |
return int((kernel_size * dilation - dilation) / 2) | |
class Backbone(nn.Module): | |
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
""" | |
Args: | |
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, | |
C denotes output features, and L is the sequence length. | |
Returns: | |
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, | |
and H denotes the model dimension. | |
""" | |
raise NotImplementedError("Subclasses must implement the forward method.") | |
class VocosBackbone(Backbone): | |
""" | |
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
num_layers (int): Number of ConvNeXtBlock layers. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional model. Defaults to None. | |
""" | |
def __init__( | |
self, | |
input_channels: int, | |
dim: int, | |
intermediate_dim: int, | |
num_layers: int, | |
layer_scale_init_value: Optional[float] = None, | |
condition_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
self.adanorm = condition_dim is not None | |
if condition_dim: | |
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
self.convnext = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
layer_scale_init_value=layer_scale_init_value, | |
condition_dim=condition_dim, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor: | |
x = self.embed(x) | |
if self.adanorm: | |
assert condition is not None | |
x = self.norm(x.transpose(1, 2), condition) | |
else: | |
x = self.norm(x.transpose(1, 2)) | |
x = x.transpose(1, 2) | |
for conv_block in self.convnext: | |
x = conv_block(x, condition) | |
x = self.final_layer_norm(x.transpose(1, 2)) | |
return x | |
class VocosResNetBackbone(Backbone): | |
""" | |
Vocos backbone module built with ResBlocks. | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
num_blocks (int): Number of ResBlock1 blocks. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. | |
""" | |
def __init__( | |
self, | |
input_channels, | |
dim, | |
num_blocks, | |
layer_scale_init_value=None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = weight_norm( | |
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) | |
) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 | |
self.resnet = nn.Sequential( | |
*[ | |
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) | |
for _ in range(num_blocks) | |
] | |
) | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = self.embed(x) | |
x = self.resnet(x) | |
x = x.transpose(1, 2) | |
return x | |