Spaces:
Runtime error
Runtime error
# Copyright (c) 2025 SparkAudio | |
# 2025 Xinsheng Wang (w.xinshawn@gmail.com) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from typing import List | |
from sparktts.modules.blocks.vocos import VocosBackbone | |
from sparktts.modules.blocks.samper import SamplingBlock | |
class Decoder(nn.Module): | |
"""Decoder module with convnext and upsampling blocks | |
Args: | |
sample_ratios (List[int]): sample ratios | |
example: [2, 2] means downsample by 2x and then upsample by 2x | |
""" | |
def __init__( | |
self, | |
input_channels: int, | |
vocos_dim: int, | |
vocos_intermediate_dim: int, | |
vocos_num_layers: int, | |
out_channels: int, | |
condition_dim: int = None, | |
sample_ratios: List[int] = [1, 1], | |
use_tanh_at_final: bool = False, | |
): | |
super().__init__() | |
self.linear_pre = nn.Linear(input_channels, vocos_dim) | |
modules = [ | |
nn.Sequential( | |
SamplingBlock( | |
dim=vocos_dim, | |
groups=vocos_dim, | |
upsample_scale=ratio, | |
), | |
VocosBackbone( | |
input_channels=vocos_dim, | |
dim=vocos_dim, | |
intermediate_dim=vocos_intermediate_dim, | |
num_layers=2, | |
condition_dim=None, | |
), | |
) | |
for ratio in sample_ratios | |
] | |
self.downsample = nn.Sequential(*modules) | |
self.vocos_backbone = VocosBackbone( | |
input_channels=vocos_dim, | |
dim=vocos_dim, | |
intermediate_dim=vocos_intermediate_dim, | |
num_layers=vocos_num_layers, | |
condition_dim=condition_dim, | |
) | |
self.linear = nn.Linear(vocos_dim, out_channels) | |
self.use_tanh_at_final = use_tanh_at_final | |
def forward(self, x: torch.Tensor, c: torch.Tensor = None): | |
"""encoder forward. | |
Args: | |
x (torch.Tensor): (batch_size, input_channels, length) | |
Returns: | |
x (torch.Tensor): (batch_size, encode_channels, length) | |
""" | |
x = self.linear_pre(x.transpose(1, 2)) | |
x = self.downsample(x).transpose(1, 2) | |
x = self.vocos_backbone(x, condition=c) | |
x = self.linear(x).transpose(1, 2) | |
if self.use_tanh_at_final: | |
x = torch.tanh(x) | |
return x | |
# test | |
if __name__ == "__main__": | |
test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50 | |
condition = torch.randn(8, 256) | |
decoder = Decoder( | |
input_channels=1024, | |
vocos_dim=384, | |
vocos_intermediate_dim=2048, | |
vocos_num_layers=12, | |
out_channels=256, | |
condition_dim=256, | |
sample_ratios=[2, 2], | |
) | |
output = decoder(test_input, condition) | |
print(output.shape) # torch.Size([8, 256, 200]) | |
if output.shape == torch.Size([8, 256, 200]): | |
print("Decoder test passed") | |
else: | |
print("Decoder test failed") | |