Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Xinsheng Wang (w.xinshawn@gmail.com) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0 | |
import torch.nn as nn | |
from sparktts.modules.blocks.layers import ( | |
Snake1d, | |
WNConv1d, | |
ResidualUnit, | |
WNConvTranspose1d, | |
init_weights, | |
) | |
class DecoderBlock(nn.Module): | |
def __init__( | |
self, | |
input_dim: int = 16, | |
output_dim: int = 8, | |
kernel_size: int = 2, | |
stride: int = 1, | |
): | |
super().__init__() | |
self.block = nn.Sequential( | |
Snake1d(input_dim), | |
WNConvTranspose1d( | |
input_dim, | |
output_dim, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=(kernel_size - stride) // 2, | |
), | |
ResidualUnit(output_dim, dilation=1), | |
ResidualUnit(output_dim, dilation=3), | |
ResidualUnit(output_dim, dilation=9), | |
) | |
def forward(self, x): | |
return self.block(x) | |
class WaveGenerator(nn.Module): | |
def __init__( | |
self, | |
input_channel, | |
channels, | |
rates, | |
kernel_sizes, | |
d_out: int = 1, | |
): | |
super().__init__() | |
# Add first conv layer | |
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)] | |
# Add upsampling + MRF blocks | |
for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)): | |
input_dim = channels // 2**i | |
output_dim = channels // 2 ** (i + 1) | |
layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)] | |
# Add final conv layer | |
layers += [ | |
Snake1d(output_dim), | |
WNConv1d(output_dim, d_out, kernel_size=7, padding=3), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*layers) | |
self.apply(init_weights) | |
def forward(self, x): | |
return self.model(x) | |