Add voyage-lite-01-instruct

#48
by voyageai01 - opened
Files changed (9) hide show
  1. .gitattributes +31 -0
  2. .gitignore +0 -6
  3. DESCRIPTION.md +1 -0
  4. Dockerfile +0 -22
  5. README.md +4 -14
  6. app.py +1781 -0
  7. download_data.py +0 -3
  8. main.py +0 -6
  9. requirements.txt +4 -4
.gitattributes ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.npy filter=lfs diff=lfs merge=lfs -text
13
+ *.npz filter=lfs diff=lfs merge=lfs -text
14
+ *.onnx filter=lfs diff=lfs merge=lfs -text
15
+ *.ot filter=lfs diff=lfs merge=lfs -text
16
+ *.parquet filter=lfs diff=lfs merge=lfs -text
17
+ *.pickle filter=lfs diff=lfs merge=lfs -text
18
+ *.pkl filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pt filter=lfs diff=lfs merge=lfs -text
21
+ *.pth filter=lfs diff=lfs merge=lfs -text
22
+ *.rar filter=lfs diff=lfs merge=lfs -text
23
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
24
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
25
+ *.tflite filter=lfs diff=lfs merge=lfs -text
26
+ *.tgz filter=lfs diff=lfs merge=lfs -text
27
+ *.wasm filter=lfs diff=lfs merge=lfs -text
28
+ *.xz filter=lfs diff=lfs merge=lfs -text
29
+ *.zip filter=lfs diff=lfs merge=lfs -text
30
+ *.zst filter=lfs diff=lfs merge=lfs -text
31
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore DELETED
@@ -1,6 +0,0 @@
1
- *.pyc
2
- model_infos.json
3
- space
4
- .venv
5
- results
6
- mteb
 
 
 
 
 
 
 
DESCRIPTION.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Massive Text Embedding Benchmark (MTEB) Leaderboard.
Dockerfile DELETED
@@ -1,22 +0,0 @@
1
- FROM python:3.12-bookworm
2
-
3
- RUN apt update
4
- RUN apt install -y git
5
-
6
- RUN useradd -m -u 1000 user
7
- ENV PATH="/home/user/.local/bin:$PATH"
8
-
9
- RUN git clone https://github.com/embeddings-benchmark/mteb.git
10
- RUN chown -R 1000 /mteb
11
- USER user
12
-
13
- COPY --chown=user ./main.py /mteb/main.py
14
- COPY --chown=user ./requirements.txt /mteb/requirements.txt
15
- COPY --chown=user ./download_data.py /mteb/download_data.py
16
- RUN cd /mteb/ && pip install -e ".[leaderboard]"
17
- RUN pip install matplotlib
18
-
19
- WORKDIR /mteb
20
-
21
- EXPOSE 7860
22
- CMD ["python3", "main.py"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,20 +1,10 @@
1
  ---
2
- title: MTEB Leaderboard
3
  emoji: 🥇
4
  colorFrom: blue
5
  colorTo: indigo
6
- sdk: docker
7
- app_port: 7860
8
  app_file: app.py
9
- pinned: true
10
- tags:
11
- - leaderboard
12
- startup_duration_timeout: 1h
13
- fullWidth: true
14
- license: mit
15
- short_description: Embedding Leaderboard
16
  ---
17
-
18
- # MTEB Leaderboard
19
-
20
- Embedding Leaderboard
 
1
  ---
2
+ title: MTEB Leaderboard
3
  emoji: 🥇
4
  colorFrom: blue
5
  colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.0.2
8
  app_file: app.py
9
+ pinned: false
 
 
 
 
 
 
10
  ---
 
 
 
 
app.py ADDED
@@ -0,0 +1,1781 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import json
3
+
4
+ from datasets import load_dataset
5
+ import gradio as gr
6
+ from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
7
+ from huggingface_hub.repocard import metadata_load
8
+ import pandas as pd
9
+
10
+ TASKS = [
11
+ "BitextMining",
12
+ "Classification",
13
+ "Clustering",
14
+ "PairClassification",
15
+ "Reranking",
16
+ "Retrieval",
17
+ "STS",
18
+ "Summarization",
19
+ ]
20
+
21
+ TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
22
+ TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"]
23
+
24
+ TASK_LIST_CLASSIFICATION = [
25
+ "AmazonCounterfactualClassification (en)",
26
+ "AmazonPolarityClassification",
27
+ "AmazonReviewsClassification (en)",
28
+ "Banking77Classification",
29
+ "EmotionClassification",
30
+ "ImdbClassification",
31
+ "MassiveIntentClassification (en)",
32
+ "MassiveScenarioClassification (en)",
33
+ "MTOPDomainClassification (en)",
34
+ "MTOPIntentClassification (en)",
35
+ "ToxicConversationsClassification",
36
+ "TweetSentimentExtractionClassification",
37
+ ]
38
+
39
+ TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
40
+
41
+ TASK_LIST_CLASSIFICATION_DA = [
42
+ "AngryTweetsClassification",
43
+ "DanishPoliticalCommentsClassification",
44
+ "DKHateClassification",
45
+ "LccSentimentClassification",
46
+ "MassiveIntentClassification (da)",
47
+ "MassiveScenarioClassification (da)",
48
+ "NordicLangClassification",
49
+ "ScalaDaClassification",
50
+ ]
51
+
52
+ TASK_LIST_CLASSIFICATION_NB = [
53
+ "NoRecClassification",
54
+ "NordicLangClassification",
55
+ "NorwegianParliament",
56
+ "MassiveIntentClassification (nb)",
57
+ "MassiveScenarioClassification (nb)",
58
+ "ScalaNbClassification",
59
+ ]
60
+
61
+ TASK_LIST_CLASSIFICATION_PL = [
62
+ "AllegroReviews",
63
+ "CBD",
64
+ "MassiveIntentClassification (pl)",
65
+ "MassiveScenarioClassification (pl)",
66
+ "PAC",
67
+ "PolEmo2.0-IN",
68
+ "PolEmo2.0-OUT",
69
+ ]
70
+
71
+ TASK_LIST_CLASSIFICATION_SV = [
72
+ "DalajClassification",
73
+ "MassiveIntentClassification (sv)",
74
+ "MassiveScenarioClassification (sv)",
75
+ "NordicLangClassification",
76
+ "ScalaSvClassification",
77
+ "SweRecClassification",
78
+ ]
79
+
80
+ TASK_LIST_CLASSIFICATION_ZH = [
81
+ "AmazonReviewsClassification (zh)",
82
+ "IFlyTek",
83
+ "JDReview",
84
+ "MassiveIntentClassification (zh-CN)",
85
+ "MassiveScenarioClassification (zh-CN)",
86
+ "MultilingualSentiment",
87
+ "OnlineShopping",
88
+ "TNews",
89
+ "Waimai",
90
+ ]
91
+
92
+ TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-TW)']
93
+
94
+ TASK_LIST_CLUSTERING = [
95
+ "ArxivClusteringP2P",
96
+ "ArxivClusteringS2S",
97
+ "BiorxivClusteringP2P",
98
+ "BiorxivClusteringS2S",
99
+ "MedrxivClusteringP2P",
100
+ "MedrxivClusteringS2S",
101
+ "RedditClustering",
102
+ "RedditClusteringP2P",
103
+ "StackExchangeClustering",
104
+ "StackExchangeClusteringP2P",
105
+ "TwentyNewsgroupsClustering",
106
+ ]
107
+
108
+
109
+ TASK_LIST_CLUSTERING_DE = [
110
+ "BlurbsClusteringP2P",
111
+ "BlurbsClusteringS2S",
112
+ "TenKGnadClusteringP2P",
113
+ "TenKGnadClusteringS2S",
114
+ ]
115
+
116
+ TASK_LIST_CLUSTERING_PL = [
117
+ "8TagsClustering",
118
+ ]
119
+
120
+ TASK_LIST_CLUSTERING_ZH = [
121
+ "CLSClusteringP2P",
122
+ "CLSClusteringS2S",
123
+ "ThuNewsClusteringP2P",
124
+ "ThuNewsClusteringS2S",
125
+ ]
126
+
127
+ TASK_LIST_PAIR_CLASSIFICATION = [
128
+ "SprintDuplicateQuestions",
129
+ "TwitterSemEval2015",
130
+ "TwitterURLCorpus",
131
+ ]
132
+
133
+ TASK_LIST_PAIR_CLASSIFICATION_PL = [
134
+ "CDSC-E",
135
+ "PPC",
136
+ "PSC",
137
+ "SICK-E-PL",
138
+ ]
139
+
140
+ TASK_LIST_PAIR_CLASSIFICATION_ZH = [
141
+ "Cmnli",
142
+ "Ocnli",
143
+ ]
144
+
145
+ TASK_LIST_RERANKING = [
146
+ "AskUbuntuDupQuestions",
147
+ "MindSmallReranking",
148
+ "SciDocsRR",
149
+ "StackOverflowDupQuestions",
150
+ ]
151
+
152
+ TASK_LIST_RERANKING_ZH = [
153
+ "CMedQAv1",
154
+ "CMedQAv2",
155
+ "MMarcoReranking",
156
+ "T2Reranking",
157
+ ]
158
+
159
+ TASK_LIST_RETRIEVAL = [
160
+ "ArguAna",
161
+ "ClimateFEVER",
162
+ "CQADupstackRetrieval",
163
+ "DBPedia",
164
+ "FEVER",
165
+ "FiQA2018",
166
+ "HotpotQA",
167
+ "MSMARCO",
168
+ "NFCorpus",
169
+ "NQ",
170
+ "QuoraRetrieval",
171
+ "SCIDOCS",
172
+ "SciFact",
173
+ "Touche2020",
174
+ "TRECCOVID",
175
+ ]
176
+
177
+ TASK_LIST_RETRIEVAL_PL = [
178
+ "ArguAna-PL",
179
+ "DBPedia-PL",
180
+ "FiQA-PL",
181
+ "HotpotQA-PL",
182
+ "MSMARCO-PL",
183
+ "NFCorpus-PL",
184
+ "NQ-PL",
185
+ "Quora-PL",
186
+ "SCIDOCS-PL",
187
+ "SciFact-PL",
188
+ "TRECCOVID-PL",
189
+ ]
190
+
191
+ TASK_LIST_RETRIEVAL_ZH = [
192
+ "CmedqaRetrieval",
193
+ "CovidRetrieval",
194
+ "DuRetrieval",
195
+ "EcomRetrieval",
196
+ "MedicalRetrieval",
197
+ "MMarcoRetrieval",
198
+ "T2Retrieval",
199
+ "VideoRetrieval",
200
+ ]
201
+
202
+ TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
203
+ "CQADupstackAndroidRetrieval",
204
+ "CQADupstackEnglishRetrieval",
205
+ "CQADupstackGamingRetrieval",
206
+ "CQADupstackGisRetrieval",
207
+ "CQADupstackMathematicaRetrieval",
208
+ "CQADupstackPhysicsRetrieval",
209
+ "CQADupstackProgrammersRetrieval",
210
+ "CQADupstackStatsRetrieval",
211
+ "CQADupstackTexRetrieval",
212
+ "CQADupstackUnixRetrieval",
213
+ "CQADupstackWebmastersRetrieval",
214
+ "CQADupstackWordpressRetrieval"
215
+ ]
216
+
217
+ TASK_LIST_STS = [
218
+ "BIOSSES",
219
+ "SICK-R",
220
+ "STS12",
221
+ "STS13",
222
+ "STS14",
223
+ "STS15",
224
+ "STS16",
225
+ "STS17 (en-en)",
226
+ "STS22 (en)",
227
+ "STSBenchmark",
228
+ ]
229
+
230
+ TASK_LIST_STS_PL = [
231
+ "CDSC-R",
232
+ "SICK-R-PL",
233
+ "STS22 (pl)",
234
+ ]
235
+
236
+ TASK_LIST_STS_ZH = [
237
+ "AFQMC",
238
+ "ATEC",
239
+ "BQ",
240
+ "LCQMC",
241
+ "PAWSX",
242
+ "QBQTC",
243
+ "STS22 (zh)",
244
+ "STSB",
245
+ ]
246
+
247
+ TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
248
+ TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
249
+
250
+ TASK_LIST_SUMMARIZATION = ["SummEval",]
251
+
252
+ TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
253
+ TASK_LIST_PL = TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL
254
+ TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
255
+
256
+ TASK_TO_METRIC = {
257
+ "BitextMining": "f1",
258
+ "Clustering": "v_measure",
259
+ "Classification": "accuracy",
260
+ "PairClassification": "cos_sim_ap",
261
+ "Reranking": "map",
262
+ "Retrieval": "ndcg_at_10",
263
+ "STS": "cos_sim_spearman",
264
+ "Summarization": "cos_sim_spearman",
265
+ }
266
+
267
+ def make_clickable_model(model_name, link=None):
268
+ if link is None:
269
+ link = "https://huggingface.co/" + model_name
270
+ # Remove user from model name
271
+ return (
272
+ f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
273
+ )
274
+
275
+ # Models without metadata, thus we cannot fetch their results naturally
276
+ EXTERNAL_MODELS = [
277
+ "all-MiniLM-L12-v2",
278
+ "all-MiniLM-L6-v2",
279
+ "all-mpnet-base-v2",
280
+ "allenai-specter",
281
+ "bert-base-swedish-cased",
282
+ "bert-base-uncased",
283
+ "bge-base-zh-v1.5",
284
+ "bge-large-zh-v1.5",
285
+ "bge-large-zh-noinstruct",
286
+ "bge-small-zh-v1.5",
287
+ "contriever-base-msmarco",
288
+ "cross-en-de-roberta-sentence-transformer",
289
+ "dfm-encoder-large-v1",
290
+ "dfm-sentence-encoder-large-1",
291
+ "distiluse-base-multilingual-cased-v2",
292
+ "DanskBERT",
293
+ "e5-base",
294
+ "e5-large",
295
+ "e5-small",
296
+ "electra-small-nordic",
297
+ "electra-small-swedish-cased-discriminator",
298
+ "gbert-base",
299
+ "gbert-large",
300
+ "gelectra-base",
301
+ "gelectra-large",
302
+ "gottbert-base",
303
+ "glove.6B.300d",
304
+ "gtr-t5-base",
305
+ "gtr-t5-large",
306
+ "gtr-t5-xl",
307
+ "gtr-t5-xxl",
308
+ "herbert-base-retrieval-v2",
309
+ "komninos",
310
+ "luotuo-bert-medium",
311
+ "LASER2",
312
+ "LaBSE",
313
+ "m3e-base",
314
+ "m3e-large",
315
+ "msmarco-bert-co-condensor",
316
+ "multilingual-e5-base",
317
+ "multilingual-e5-large",
318
+ "multilingual-e5-small",
319
+ "nb-bert-base",
320
+ "nb-bert-large",
321
+ "norbert3-base",
322
+ "norbert3-large",
323
+ "paraphrase-multilingual-MiniLM-L12-v2",
324
+ "paraphrase-multilingual-mpnet-base-v2",
325
+ "sentence-bert-swedish-cased",
326
+ "sentence-t5-base",
327
+ "sentence-t5-large",
328
+ "sentence-t5-xl",
329
+ "sentence-t5-xxl",
330
+ "sup-simcse-bert-base-uncased",
331
+ "st-polish-paraphrase-from-distilroberta",
332
+ "st-polish-paraphrase-from-mpnet",
333
+ "text2vec-base-chinese",
334
+ "text2vec-large-chinese",
335
+ "text-embedding-ada-002",
336
+ "text-similarity-ada-001",
337
+ "text-similarity-babbage-001",
338
+ "text-similarity-curie-001",
339
+ "text-similarity-davinci-001",
340
+ "text-search-ada-doc-001",
341
+ "text-search-ada-001",
342
+ "text-search-babbage-001",
343
+ "text-search-curie-001",
344
+ "text-search-davinci-001",
345
+ "titan-embed-text-v1",
346
+ "unsup-simcse-bert-base-uncased",
347
+ "use-cmlm-multilingual",
348
+ "xlm-roberta-base",
349
+ "xlm-roberta-large",
350
+ ]
351
+
352
+ EXTERNAL_MODEL_TO_LINK = {
353
+ "allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
354
+ "allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
355
+ "all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
356
+ "all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
357
+ "all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
358
+ "bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
359
+ "bert-base-uncased": "https://huggingface.co/bert-base-uncased",
360
+ "bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
361
+ "bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
362
+ "bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
363
+ "bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
364
+ "contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
365
+ "cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
366
+ "DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
367
+ "distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
368
+ "dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
369
+ "dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
370
+ "e5-base": "https://huggingface.co/intfloat/e5-base",
371
+ "e5-large": "https://huggingface.co/intfloat/e5-large",
372
+ "e5-small": "https://huggingface.co/intfloat/e5-small",
373
+ "electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
374
+ "electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
375
+ "gbert-base": "https://huggingface.co/deepset/gbert-base",
376
+ "gbert-large": "https://huggingface.co/deepset/gbert-large",
377
+ "gelectra-base": "https://huggingface.co/deepset/gelectra-base",
378
+ "gelectra-large": "https://huggingface.co/deepset/gelectra-large",
379
+ "glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
380
+ "gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
381
+ "gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
382
+ "gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
383
+ "gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
384
+ "gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
385
+ "herbert-base-retrieval-v2": "https://huggingface.co/ipipan/herbert-base-retrieval-v2",
386
+ "komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
387
+ "luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
388
+ "LASER2": "https://github.com/facebookresearch/LASER",
389
+ "LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
390
+ "m3e-base": "https://huggingface.co/moka-ai/m3e-base",
391
+ "m3e-large": "https://huggingface.co/moka-ai/m3e-large",
392
+ "msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
393
+ "multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
394
+ "multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
395
+ "multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
396
+ "nb-bert-base": "https://huggingface.co/NbAiLab/nb-bert-base",
397
+ "nb-bert-large": "https://huggingface.co/NbAiLab/nb-bert-large",
398
+ "norbert3-base": "https://huggingface.co/ltg/norbert3-base",
399
+ "norbert3-large": "https://huggingface.co/ltg/norbert3-large",
400
+ "paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
401
+ "paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
402
+ "sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
403
+ "sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
404
+ "sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
405
+ "sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
406
+ "sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
407
+ "sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
408
+ "st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
409
+ "st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
410
+ "text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
411
+ "text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
412
+ "text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
413
+ "text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
414
+ "text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
415
+ "text-similarity-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
416
+ "text-similarity-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
417
+ "text-search-ada-doc-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
418
+ "text-search-ada-query-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
419
+ "text-search-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
420
+ "text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
421
+ "text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
422
+ "text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
423
+ "titan-embed-text-v1": "https://docs.aws.amazon.com/bedrock/latest/userguide/embeddings.html",
424
+ "unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
425
+ "use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
426
+ "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
427
+ "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large",
428
+ }
429
+
430
+ EXTERNAL_MODEL_TO_DIM = {
431
+ "all-MiniLM-L12-v2": 384,
432
+ "all-MiniLM-L6-v2": 384,
433
+ "all-mpnet-base-v2": 768,
434
+ "allenai-specter": 768,
435
+ "bert-base-swedish-cased": 768,
436
+ "bert-base-uncased": 768,
437
+ "bge-base-zh-v1.5": 768,
438
+ "bge-large-zh-v1.5": 1024,
439
+ "bge-large-zh-noinstruct": 1024,
440
+ "bge-small-zh-v1.5": 512,
441
+ "contriever-base-msmarco": 768,
442
+ "cross-en-de-roberta-sentence-transformer": 768,
443
+ "DanskBERT": 768,
444
+ "distiluse-base-multilingual-cased-v2": 512,
445
+ "dfm-encoder-large-v1": 1024,
446
+ "dfm-sentence-encoder-large-1": 1024,
447
+ "e5-base": 768,
448
+ "e5-small": 384,
449
+ "e5-large": 1024,
450
+ "electra-small-nordic": 256,
451
+ "electra-small-swedish-cased-discriminator": 256,
452
+ "luotuo-bert-medium": 768,
453
+ "LASER2": 1024,
454
+ "LaBSE": 768,
455
+ "gbert-base": 768,
456
+ "gbert-large": 1024,
457
+ "gelectra-base": 768,
458
+ "gelectra-large": 1024,
459
+ "glove.6B.300d": 300,
460
+ "gottbert-base": 768,
461
+ "gtr-t5-base": 768,
462
+ "gtr-t5-large": 768,
463
+ "gtr-t5-xl": 768,
464
+ "gtr-t5-xxl": 768,
465
+ "herbert-base-retrieval-v2": 768,
466
+ "komninos": 300,
467
+ "m3e-base": 768,
468
+ "m3e-large": 768,
469
+ "msmarco-bert-co-condensor": 768,
470
+ "multilingual-e5-base": 768,
471
+ "multilingual-e5-small": 384,
472
+ "multilingual-e5-large": 1024,
473
+ "nb-bert-base": 768,
474
+ "nb-bert-large": 1024,
475
+ "norbert3-base": 768,
476
+ "norbert3-large": 1024,
477
+ "paraphrase-multilingual-MiniLM-L12-v2": 384,
478
+ "paraphrase-multilingual-mpnet-base-v2": 768,
479
+ "sentence-bert-swedish-cased": 768,
480
+ "sentence-t5-base": 768,
481
+ "sentence-t5-large": 768,
482
+ "sentence-t5-xl": 768,
483
+ "sentence-t5-xxl": 768,
484
+ "sup-simcse-bert-base-uncased": 768,
485
+ "st-polish-paraphrase-from-distilroberta": 768,
486
+ "st-polish-paraphrase-from-mpnet": 768,
487
+ "text2vec-base-chinese": 768,
488
+ "text2vec-large-chinese": 1024,
489
+ "text-embedding-ada-002": 1536,
490
+ "text-similarity-ada-001": 1024,
491
+ "text-similarity-babbage-001": 2048,
492
+ "text-similarity-curie-001": 4096,
493
+ "text-similarity-davinci-001": 12288,
494
+ "text-search-ada-doc-001": 1024,
495
+ "text-search-ada-query-001": 1024,
496
+ "text-search-ada-001": 1024,
497
+ "text-search-babbage-001": 2048,
498
+ "text-search-curie-001": 4096,
499
+ "text-search-davinci-001": 12288,
500
+ "titan-embed-text-v1": 1536,
501
+ "unsup-simcse-bert-base-uncased": 768,
502
+ "use-cmlm-multilingual": 768,
503
+ "xlm-roberta-base": 768,
504
+ "xlm-roberta-large": 1024,
505
+ }
506
+
507
+ EXTERNAL_MODEL_TO_SEQLEN = {
508
+ "all-MiniLM-L12-v2": 512,
509
+ "all-MiniLM-L6-v2": 512,
510
+ "all-mpnet-base-v2": 514,
511
+ "allenai-specter": 512,
512
+ "bert-base-swedish-cased": 512,
513
+ "bert-base-uncased": 512,
514
+ "bge-base-zh-v1.5": 512,
515
+ "bge-large-zh-v1.5": 512,
516
+ "bge-large-zh-noinstruct": 512,
517
+ "bge-small-zh-v1.5": 512,
518
+ "contriever-base-msmarco": 512,
519
+ "cross-en-de-roberta-sentence-transformer": 514,
520
+ "DanskBERT": 514,
521
+ "dfm-encoder-large-v1": 512,
522
+ "dfm-sentence-encoder-large-1": 512,
523
+ "distiluse-base-multilingual-cased-v2": 512,
524
+ "e5-base": 512,
525
+ "e5-large": 512,
526
+ "e5-small": 512,
527
+ "electra-small-nordic": 512,
528
+ "electra-small-swedish-cased-discriminator": 512,
529
+ "gbert-base": 512,
530
+ "gbert-large": 512,
531
+ "gelectra-base": 512,
532
+ "gelectra-large": 512,
533
+ "gottbert-base": 512,
534
+ "glove.6B.300d": "N/A",
535
+ "gtr-t5-base": 512,
536
+ "gtr-t5-large": 512,
537
+ "gtr-t5-xl": 512,
538
+ "gtr-t5-xxl": 512,
539
+ "herbert-base-retrieval-v2": 514,
540
+ "komninos": "N/A",
541
+ "luotuo-bert-medium": 512,
542
+ "LASER2": "N/A",
543
+ "LaBSE": 512,
544
+ "m3e-base": 512,
545
+ "m3e-large": 512,
546
+ "msmarco-bert-co-condensor": 512,
547
+ "multilingual-e5-base": 514,
548
+ "multilingual-e5-large": 514,
549
+ "multilingual-e5-small": 512,
550
+ "nb-bert-base": 512,
551
+ "nb-bert-large": 512,
552
+ "norbert3-base": 512,
553
+ "norbert3-large": 512,
554
+ "paraphrase-multilingual-MiniLM-L12-v2": 512,
555
+ "paraphrase-multilingual-mpnet-base-v2": 514,
556
+ "sentence-bert-swedish-cased": 512,
557
+ "sentence-t5-base": 512,
558
+ "sentence-t5-large": 512,
559
+ "sentence-t5-xl": 512,
560
+ "sentence-t5-xxl": 512,
561
+ "sup-simcse-bert-base-uncased": 512,
562
+ "st-polish-paraphrase-from-distilroberta": 514,
563
+ "st-polish-paraphrase-from-mpnet": 514,
564
+ "text2vec-base-chinese": 512,
565
+ "text2vec-large-chinese": 512,
566
+ "text-embedding-ada-002": 8191,
567
+ "text-similarity-ada-001": 2046,
568
+ "text-similarity-babbage-001": 2046,
569
+ "text-similarity-curie-001": 2046,
570
+ "text-similarity-davinci-001": 2046,
571
+ "text-search-ada-doc-001": 2046,
572
+ "text-search-ada-query-001": 2046,
573
+ "text-search-ada-001": 2046,
574
+ "text-search-babbage-001": 2046,
575
+ "text-search-curie-001": 2046,
576
+ "text-search-davinci-001": 2046,
577
+ "titan-embed-text-v1": 8000,
578
+ "use-cmlm-multilingual": 512,
579
+ "unsup-simcse-bert-base-uncased": 512,
580
+ "xlm-roberta-base": 514,
581
+ "xlm-roberta-large": 514,
582
+ }
583
+
584
+ EXTERNAL_MODEL_TO_SIZE = {
585
+ "allenai-specter": 0.44,
586
+ "all-MiniLM-L12-v2": 0.13,
587
+ "all-MiniLM-L6-v2": 0.09,
588
+ "all-mpnet-base-v2": 0.44,
589
+ "bert-base-uncased": 0.44,
590
+ "bert-base-swedish-cased": 0.50,
591
+ "bge-base-zh-v1.5": 0.41,
592
+ "bge-large-zh-v1.5": 1.30,
593
+ "bge-large-zh-noinstruct": 1.30,
594
+ "bge-small-zh-v1.5": 0.10,
595
+ "cross-en-de-roberta-sentence-transformer": 1.11,
596
+ "contriever-base-msmarco": 0.44,
597
+ "DanskBERT": 0.50,
598
+ "distiluse-base-multilingual-cased-v2": 0.54,
599
+ "dfm-encoder-large-v1": 1.42,
600
+ "dfm-sentence-encoder-large-1": 1.63,
601
+ "e5-base": 0.44,
602
+ "e5-small": 0.13,
603
+ "e5-large": 1.34,
604
+ "electra-small-nordic": 0.09,
605
+ "electra-small-swedish-cased-discriminator": 0.06,
606
+ "gbert-base": 0.44,
607
+ "gbert-large": 1.35,
608
+ "gelectra-base": 0.44,
609
+ "gelectra-large": 1.34,
610
+ "glove.6B.300d": 0.48,
611
+ "gottbert-base": 0.51,
612
+ "gtr-t5-base": 0.22,
613
+ "gtr-t5-large": 0.67,
614
+ "gtr-t5-xl": 2.48,
615
+ "gtr-t5-xxl": 9.73,
616
+ "herbert-base-retrieval-v2": 0.50,
617
+ "komninos": 0.27,
618
+ "luotuo-bert-medium": 1.31,
619
+ "LASER2": 0.17,
620
+ "LaBSE": 1.88,
621
+ "m3e-base": 0.41,
622
+ "m3e-large": 0.41,
623
+ "msmarco-bert-co-condensor": 0.44,
624
+ "multilingual-e5-base": 1.11,
625
+ "multilingual-e5-small": 0.47,
626
+ "multilingual-e5-large": 2.24,
627
+ "nb-bert-base": 0.71,
628
+ "nb-bert-large": 1.42,
629
+ "norbert3-base": 0.52,
630
+ "norbert3-large": 1.47,
631
+ "paraphrase-multilingual-mpnet-base-v2": 1.11,
632
+ "paraphrase-multilingual-MiniLM-L12-v2": 0.47,
633
+ "sentence-bert-swedish-cased": 0.50,
634
+ "sentence-t5-base": 0.22,
635
+ "sentence-t5-large": 0.67,
636
+ "sentence-t5-xl": 2.48,
637
+ "sentence-t5-xxl": 9.73,
638
+ "sup-simcse-bert-base-uncased": 0.44,
639
+ "st-polish-paraphrase-from-distilroberta": 0.50,
640
+ "st-polish-paraphrase-from-mpnet": 0.50,
641
+ "text2vec-base-chinese": 0.41,
642
+ "text2vec-large-chinese": 1.30,
643
+ "unsup-simcse-bert-base-uncased": 0.44,
644
+ "use-cmlm-multilingual": 1.89,
645
+ "xlm-roberta-base": 1.12,
646
+ "xlm-roberta-large": 2.24,
647
+ }
648
+
649
+ MODELS_TO_SKIP = {
650
+ "baseplate/instructor-large-1", # Duplicate
651
+ "radames/e5-large", # Duplicate
652
+ "gentlebowl/instructor-large-safetensors", # Duplicate
653
+ "Consensus/instructor-base", # Duplicate
654
+ "GovCompete/instructor-xl", # Duplicate
655
+ "GovCompete/e5-large-v2", # Duplicate
656
+ "t12e/instructor-base", # Duplicate
657
+ "michaelfeil/ct2fast-e5-large-v2",
658
+ "michaelfeil/ct2fast-e5-large",
659
+ "michaelfeil/ct2fast-e5-small-v2",
660
+ "newsrx/instructor-xl-newsrx",
661
+ "newsrx/instructor-large-newsrx",
662
+ "fresha/e5-large-v2-endpoint",
663
+ "ggrn/e5-small-v2",
664
+ "michaelfeil/ct2fast-e5-small",
665
+ "jncraton/e5-small-v2-ct2-int8",
666
+ "anttip/ct2fast-e5-small-v2-hfie",
667
+ "newsrx/instructor-large",
668
+ "newsrx/instructor-xl",
669
+ "dmlls/all-mpnet-base-v2",
670
+ "cgldo/semanticClone",
671
+ "Malmuk1/e5-large-v2_Sharded",
672
+ "jncraton/gte-small-ct2-int8",
673
+ "Einas/einas_ashkar",
674
+ "gruber/e5-small-v2-ggml",
675
+ "jncraton/bge-small-en-ct2-int8",
676
+ "vectoriseai/bge-small-en",
677
+ "recipe/embeddings",
678
+ "dhairya0907/thenlper-get-large",
679
+ "Narsil/bge-base-en",
680
+ "kozistr/fused-large-en",
681
+ "sionic-ai/sionic-ai-v2", # Wait for https://huggingface.co/sionic-ai/sionic-ai-v2/discussions/1
682
+ "sionic-ai/sionic-ai-v1", # Wait for https://huggingface.co/sionic-ai/sionic-ai-v2/discussions/1
683
+ "BAAI/bge-large-en", # Deprecated in favor of v1.5
684
+ "BAAI/bge-base-en", # Deprecated in favor of v1.5
685
+ "BAAI/bge-small-en", # Deprecated in favor of v1.5
686
+ "d0rj/e5-large-en-ru",
687
+ "d0rj/e5-base-en-ru",
688
+ "d0rj/e5-small-en-ru",
689
+ "aident-ai/bge-base-en-onnx",
690
+ "barisaydin/bge-base-en",
691
+ "barisaydin/gte-large",
692
+ "barisaydin/gte-base",
693
+ "barisaydin/gte-small",
694
+ "barisaydin/bge-small-en",
695
+ "odunola/e5-base-v2",
696
+ "goldenrooster/multilingual-e5-large",
697
+ "davidpeer/gte-small",
698
+ "barisaydin/bge-large-en",
699
+ "jamesgpt1/english-large-v1",
700
+ "vectoriseai/bge-large-en-v1.5",
701
+ "vectoriseai/bge-base-en-v1.5",
702
+ "vectoriseai/instructor-large",
703
+ "vectoriseai/instructor-base",
704
+ "vectoriseai/gte-large",
705
+ "vectoriseai/gte-base",
706
+ "vectoriseai/e5-large-v2",
707
+ "vectoriseai/bge-small-en-v1.5",
708
+ "vectoriseai/e5-base-v2",
709
+ "vectoriseai/e5-large",
710
+ "vectoriseai/multilingual-e5-large",
711
+ "vectoriseai/gte-small",
712
+ "vectoriseai/ember-v1",
713
+ "vectoriseai/e5-base",
714
+ "vectoriseai/e5-small-v2",
715
+ "michaelfeil/ct2fast-bge-large-en-v1.5",
716
+ "michaelfeil/ct2fast-bge-large-en-v1.5",
717
+ "michaelfeil/ct2fast-bge-base-en-v1.5",
718
+ "michaelfeil/ct2fast-gte-large",
719
+ "michaelfeil/ct2fast-gte-base",
720
+ "michaelfeil/ct2fast-bge-small-en-v1.5",
721
+ "rizki/bgr-tf",
722
+ "ef-zulla/e5-multi-sml-torch",
723
+ "cherubhao/yogamodel",
724
+ "morgendigital/multilingual-e5-large-quantized",
725
+ "jncraton/gte-tiny-ct2-int8",
726
+ "Research2NLP/electrical_stella",
727
+ }
728
+
729
+ EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
730
+
731
+ def add_lang(examples):
732
+ if not(examples["eval_language"]):
733
+ examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
734
+ else:
735
+ examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
736
+ return examples
737
+
738
+ def add_task(examples):
739
+ # Could be added to the dataset loading script instead
740
+ if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_NB + TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_ZH:
741
+ examples["mteb_task"] = "Classification"
742
+ elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_PL + TASK_LIST_CLUSTERING_ZH:
743
+ examples["mteb_task"] = "Clustering"
744
+ elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_PAIR_CLASSIFICATION_ZH:
745
+ examples["mteb_task"] = "PairClassification"
746
+ elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING + TASK_LIST_RERANKING_ZH:
747
+ examples["mteb_task"] = "Reranking"
748
+ elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH:
749
+ examples["mteb_task"] = "Retrieval"
750
+ elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM + TASK_LIST_STS_PL + TASK_LIST_STS_ZH:
751
+ examples["mteb_task"] = "STS"
752
+ elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
753
+ examples["mteb_task"] = "Summarization"
754
+ elif examples["mteb_dataset_name"] in [x.split(" ")[0] for x in TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER]:
755
+ examples["mteb_task"] = "BitextMining"
756
+ else:
757
+ print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
758
+ examples["mteb_task"] = "Unknown"
759
+ return examples
760
+
761
+ for model in EXTERNAL_MODELS:
762
+ ds = load_dataset("mteb/results", model)
763
+ # For local debugging:
764
+ #, download_mode='force_redownload', verification_mode="no_checks")
765
+ ds = ds.map(add_lang)
766
+ ds = ds.map(add_task)
767
+ base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
768
+ # For now only one metric per task - Could add more metrics lateron
769
+ for task, metric in TASK_TO_METRIC.items():
770
+ ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
771
+ ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
772
+ EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
773
+
774
+ def get_dim_seq_size(model):
775
+ filenames = [sib.rfilename for sib in model.siblings]
776
+ dim, seq, size = "", "", ""
777
+ if "1_Pooling/config.json" in filenames:
778
+ st_config_path = hf_hub_download(model.modelId, filename="1_Pooling/config.json")
779
+ dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
780
+ elif "2_Pooling/config.json" in filenames:
781
+ st_config_path = hf_hub_download(model.modelId, filename="2_Pooling/config.json")
782
+ dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
783
+ if "config.json" in filenames:
784
+ config_path = hf_hub_download(model.modelId, filename="config.json")
785
+ config = json.load(open(config_path))
786
+ if not dim:
787
+ dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
788
+ seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
789
+ # Get model file size without downloading
790
+ if "pytorch_model.bin" in filenames:
791
+ url = hf_hub_url(model.modelId, filename="pytorch_model.bin")
792
+ meta = get_hf_file_metadata(url)
793
+ size = round(meta.size / 1e9, 2)
794
+ elif "pytorch_model.bin.index.json" in filenames:
795
+ index_path = hf_hub_download(model.modelId, filename="pytorch_model.bin.index.json")
796
+ """
797
+ {
798
+ "metadata": {
799
+ "total_size": 28272820224
800
+ },....
801
+ """
802
+ size = json.load(open(index_path))
803
+ if ("metadata" in size) and ("total_size" in size["metadata"]):
804
+ size = round(size["metadata"]["total_size"] / 1e9, 2)
805
+ return dim, seq, size
806
+
807
+ def make_datasets_clickable(df):
808
+ """Does not work"""
809
+ if "BornholmBitextMining" in df.columns:
810
+ link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
811
+ df = df.rename(
812
+ columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
813
+ return df
814
+
815
+ def add_rank(df):
816
+ cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
817
+ if len(cols_to_rank) == 1:
818
+ df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
819
+ else:
820
+ df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False))
821
+ df.sort_values("Average", ascending=False, inplace=True)
822
+ df.insert(0, "Rank", list(range(1, len(df) + 1)))
823
+ df = df.round(2)
824
+ # Fill NaN after averaging
825
+ df.fillna("", inplace=True)
826
+ return df
827
+
828
+ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC, rank=True):
829
+ api = HfApi()
830
+ models = api.list_models(filter="mteb")
831
+ # Initialize list to models that we cannot fetch metadata from
832
+ df_list = []
833
+ for model in EXTERNAL_MODEL_RESULTS:
834
+ results_list = [res for task in tasks for res in EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]]
835
+ if len(datasets) > 0:
836
+ res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
837
+ elif langs:
838
+ # Would be cleaner to rely on an extra language column instead
839
+ langs_format = [f"({lang})" for lang in langs]
840
+ res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
841
+ else:
842
+ res = {k: v for d in results_list for k, v in d.items()}
843
+ # Model & at least one result
844
+ if len(res) > 1:
845
+ if add_emb_dim:
846
+ res["Model Size (GB)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
847
+ res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
848
+ res["Sequence Length"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
849
+ df_list.append(res)
850
+
851
+ for model in models:
852
+ if model.modelId in MODELS_TO_SKIP: continue
853
+ print("MODEL", model)
854
+ readme_path = hf_hub_download(model.modelId, filename="README.md")
855
+ meta = metadata_load(readme_path)
856
+ # meta['model-index'][0]["results"] is list of elements like:
857
+ # {
858
+ # "task": {"type": "Classification"},
859
+ # "dataset": {
860
+ # "type": "mteb/amazon_massive_intent",
861
+ # "name": "MTEB MassiveIntentClassification (nb)",
862
+ # "config": "nb",
863
+ # "split": "test",
864
+ # },
865
+ # "metrics": [
866
+ # {"type": "accuracy", "value": 39.81506388702084},
867
+ # {"type": "f1", "value": 38.809586587791664},
868
+ # ],
869
+ # },
870
+ # Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
871
+ if len(datasets) > 0:
872
+ task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
873
+ elif langs:
874
+ task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
875
+ else:
876
+ task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
877
+ out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
878
+ out = {k: v for d in out for k, v in d.items()}
879
+ out["Model"] = make_clickable_model(model.modelId)
880
+ # Model & at least one result
881
+ if len(out) > 1:
882
+ if add_emb_dim:
883
+ out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
884
+ df_list.append(out)
885
+ df = pd.DataFrame(df_list)
886
+ # If there are any models that are the same, merge them
887
+ # E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
888
+ df = df.groupby("Model", as_index=False).first()
889
+ # Put 'Model' column first
890
+ cols = sorted(list(df.columns))
891
+ cols.insert(0, cols.pop(cols.index("Model")))
892
+ df = df[cols]
893
+ if rank:
894
+ df = add_rank(df)
895
+ if fillna:
896
+ df.fillna("", inplace=True)
897
+ return df
898
+
899
+ def get_mteb_average():
900
+ global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
901
+ DATA_OVERALL = get_mteb_data(
902
+ tasks=[
903
+ "Classification",
904
+ "Clustering",
905
+ "PairClassification",
906
+ "Reranking",
907
+ "Retrieval",
908
+ "STS",
909
+ "Summarization",
910
+ ],
911
+ datasets=TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION,
912
+ fillna=False,
913
+ add_emb_dim=True,
914
+ rank=False,
915
+ )
916
+ # Debugging:
917
+ # DATA_OVERALL.to_csv("overall.csv")
918
+
919
+ DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
920
+ DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
921
+ DATA_OVERALL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
922
+ DATA_OVERALL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
923
+ DATA_OVERALL.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
924
+ DATA_OVERALL.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
925
+ DATA_OVERALL.insert(7, f"STS Average ({len(TASK_LIST_STS)} datasets)", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
926
+ DATA_OVERALL.insert(8, f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
927
+ DATA_OVERALL.sort_values(f"Average ({len(TASK_LIST_EN)} datasets)", ascending=False, inplace=True)
928
+ # Start ranking from 1
929
+ DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
930
+
931
+ DATA_OVERALL = DATA_OVERALL.round(2)
932
+
933
+ DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
934
+ # Only keep rows with at least one score in addition to the "Model" & rank column
935
+ DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)]
936
+
937
+ DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
938
+ DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)]
939
+
940
+ DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
941
+ DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)]
942
+
943
+ DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
944
+ DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)]
945
+
946
+ DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
947
+ DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)]
948
+
949
+ DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
950
+ DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)]
951
+
952
+ DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
953
+ DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)]
954
+
955
+ # Fill NaN after averaging
956
+ DATA_OVERALL.fillna("", inplace=True)
957
+
958
+ DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
959
+ DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
960
+
961
+ return DATA_OVERALL
962
+
963
+ def get_mteb_average_zh():
964
+ global DATA_OVERALL_ZH, DATA_CLASSIFICATION_ZH, DATA_CLUSTERING_ZH, DATA_PAIR_CLASSIFICATION_ZH, DATA_RERANKING_ZH, DATA_RETRIEVAL_ZH, DATA_STS_ZH
965
+ DATA_OVERALL_ZH = get_mteb_data(
966
+ tasks=[
967
+ "Classification",
968
+ "Clustering",
969
+ "PairClassification",
970
+ "Reranking",
971
+ "Retrieval",
972
+ "STS",
973
+ ],
974
+ datasets=TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH,
975
+ fillna=False,
976
+ add_emb_dim=True,
977
+ rank=False,
978
+ )
979
+ # Debugging:
980
+ # DATA_OVERALL_ZH.to_csv("overall.csv")
981
+
982
+ DATA_OVERALL_ZH.insert(1, f"Average ({len(TASK_LIST_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_ZH].mean(axis=1, skipna=False))
983
+ DATA_OVERALL_ZH.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
984
+ DATA_OVERALL_ZH.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLUSTERING_ZH].mean(axis=1, skipna=False))
985
+ DATA_OVERALL_ZH.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_PAIR_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
986
+ DATA_OVERALL_ZH.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RERANKING_ZH].mean(axis=1, skipna=False))
987
+ DATA_OVERALL_ZH.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RETRIEVAL_ZH].mean(axis=1, skipna=False))
988
+ DATA_OVERALL_ZH.insert(7, f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_STS_ZH].mean(axis=1, skipna=False))
989
+ DATA_OVERALL_ZH.sort_values(f"Average ({len(TASK_LIST_ZH)} datasets)", ascending=False, inplace=True)
990
+ # Start ranking from 1
991
+ DATA_OVERALL_ZH.insert(0, "Rank", list(range(1, len(DATA_OVERALL_ZH) + 1)))
992
+
993
+ DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2)
994
+
995
+ DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH])
996
+ # Only keep rows with at least one score in addition to the "Model" & rank column
997
+ DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
998
+
999
+ DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH])
1000
+ DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)]
1001
+
1002
+ DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
1003
+ DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
1004
+
1005
+ DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH])
1006
+ DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)]
1007
+
1008
+ DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH])
1009
+ DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)]
1010
+
1011
+ DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH])
1012
+ DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)]
1013
+
1014
+ # Fill NaN after averaging
1015
+ DATA_OVERALL_ZH.fillna("", inplace=True)
1016
+
1017
+ DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
1018
+ DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)]
1019
+
1020
+ return DATA_OVERALL_ZH
1021
+
1022
+ def get_mteb_average_pl():
1023
+ global DATA_OVERALL_PL, DATA_CLASSIFICATION_PL, DATA_CLUSTERING_PL, DATA_PAIR_CLASSIFICATION_PL, DATA_RETRIEVAL_PL, DATA_STS_PL
1024
+ DATA_OVERALL_PL = get_mteb_data(
1025
+ tasks=[
1026
+ "Classification",
1027
+ "Clustering",
1028
+ "PairClassification",
1029
+ "Retrieval",
1030
+ "STS",
1031
+ ],
1032
+ datasets=TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL,
1033
+ fillna=False,
1034
+ add_emb_dim=True,
1035
+ rank=False,
1036
+ )
1037
+ # Debugging:
1038
+ # DATA_OVERALL_PL.to_csv("overall.csv")
1039
+
1040
+ DATA_OVERALL_PL.insert(1, f"Average ({len(TASK_LIST_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_PL].mean(axis=1, skipna=False))
1041
+ DATA_OVERALL_PL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_CLASSIFICATION_PL].mean(axis=1, skipna=False))
1042
+ DATA_OVERALL_PL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_CLUSTERING_PL].mean(axis=1, skipna=False))
1043
+ DATA_OVERALL_PL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_PAIR_CLASSIFICATION_PL].mean(axis=1, skipna=False))
1044
+ DATA_OVERALL_PL.insert(5, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_RETRIEVAL_PL].mean(axis=1, skipna=False))
1045
+ DATA_OVERALL_PL.insert(6, f"STS Average ({len(TASK_LIST_STS_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_STS_PL].mean(axis=1, skipna=False))
1046
+ DATA_OVERALL_PL.sort_values(f"Average ({len(TASK_LIST_PL)} datasets)", ascending=False, inplace=True)
1047
+ # Start ranking from 1
1048
+ DATA_OVERALL_PL.insert(0, "Rank", list(range(1, len(DATA_OVERALL_PL) + 1)))
1049
+
1050
+ DATA_OVERALL_PL = DATA_OVERALL_PL.round(2)
1051
+
1052
+ DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLASSIFICATION_PL])
1053
+ # Only keep rows with at least one score in addition to the "Model" & rank column
1054
+ DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
1055
+
1056
+ DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLUSTERING_PL])
1057
+ DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 2:].ne("").any(axis=1)]
1058
+
1059
+ DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_PL])
1060
+ DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
1061
+
1062
+ DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_RETRIEVAL_PL])
1063
+ DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 2:].ne("").any(axis=1)]
1064
+
1065
+ DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_STS_PL])
1066
+ DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 2:].ne("").any(axis=1)]
1067
+
1068
+ # Fill NaN after averaging
1069
+ DATA_OVERALL_PL.fillna("", inplace=True)
1070
+
1071
+ DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]]
1072
+ DATA_OVERALL_PL = DATA_OVERALL_PL[DATA_OVERALL_PL.iloc[:, 5:].ne("").any(axis=1)]
1073
+
1074
+ return DATA_OVERALL_PL
1075
+
1076
+ get_mteb_average()
1077
+ get_mteb_average_pl()
1078
+ get_mteb_average_zh()
1079
+ DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
1080
+ DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
1081
+ DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
1082
+ DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
1083
+ DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
1084
+ DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
1085
+ DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
1086
+ DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)
1087
+
1088
+ # Exact, add all non-nan integer values for every dataset
1089
+ NUM_SCORES = 0
1090
+ DATASETS = []
1091
+ MODELS = []
1092
+ # LANGUAGES = []
1093
+ for d in [
1094
+ DATA_BITEXT_MINING,
1095
+ DATA_BITEXT_MINING_OTHER,
1096
+ DATA_CLASSIFICATION_EN,
1097
+ DATA_CLASSIFICATION_DA,
1098
+ DATA_CLASSIFICATION_NB,
1099
+ DATA_CLASSIFICATION_PL,
1100
+ DATA_CLASSIFICATION_SV,
1101
+ DATA_CLASSIFICATION_ZH,
1102
+ DATA_CLASSIFICATION_OTHER,
1103
+ DATA_CLUSTERING,
1104
+ DATA_CLUSTERING_DE,
1105
+ DATA_CLUSTERING_PL,
1106
+ DATA_CLUSTERING_ZH,
1107
+ DATA_PAIR_CLASSIFICATION,
1108
+ DATA_PAIR_CLASSIFICATION_PL,
1109
+ DATA_PAIR_CLASSIFICATION_ZH,
1110
+ DATA_RERANKING,
1111
+ DATA_RERANKING_ZH,
1112
+ DATA_RETRIEVAL,
1113
+ DATA_RETRIEVAL_PL,
1114
+ DATA_RETRIEVAL_ZH,
1115
+ DATA_STS_EN,
1116
+ DATA_STS_PL,
1117
+ DATA_STS_ZH,
1118
+ DATA_STS_OTHER,
1119
+ DATA_SUMMARIZATION,
1120
+ ]:
1121
+ # NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
1122
+ cols_to_ignore = 3 if "Average" in d.columns else 2
1123
+ # Count number of scores including only non-nan floats & excluding the rank column
1124
+ NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
1125
+ # Exclude rank & model name column (first two); Do not count different language versions as different datasets
1126
+ DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
1127
+ # LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
1128
+ MODELS += d["Model"].tolist()
1129
+
1130
+ NUM_DATASETS = len(set(DATASETS))
1131
+ # NUM_LANGUAGES = len(set(LANGUAGES))
1132
+ NUM_MODELS = len(set(MODELS))
1133
+
1134
+ block = gr.Blocks()
1135
+ with block:
1136
+ gr.Markdown(f"""
1137
+ Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
1138
+
1139
+ - **Total Datasets**: {NUM_DATASETS}
1140
+ - **Total Languages**: 113
1141
+ - **Total Scores**: {NUM_SCORES}
1142
+ - **Total Models**: {NUM_MODELS}
1143
+ """)
1144
+ with gr.Tabs():
1145
+ with gr.TabItem("Overall"):
1146
+ with gr.TabItem("English"):
1147
+ with gr.Row():
1148
+ gr.Markdown("""
1149
+ **Overall MTEB English leaderboard** 🔮
1150
+
1151
+ - **Metric:** Various, refer to task tabs
1152
+ - **Languages:** English
1153
+ """)
1154
+ with gr.Row():
1155
+ data_overall = gr.components.Dataframe(
1156
+ DATA_OVERALL,
1157
+ datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns),
1158
+ type="pandas",
1159
+ wrap=True,
1160
+ )
1161
+ with gr.Row():
1162
+ data_run_overall = gr.Button("Refresh")
1163
+ data_run_overall.click(get_mteb_average, inputs=None, outputs=data_overall)
1164
+ with gr.TabItem("Chinese"):
1165
+ with gr.Row():
1166
+ gr.Markdown("""
1167
+ **Overall MTEB Chinese leaderboard (C-MTEB)** 🔮🇨🇳
1168
+
1169
+ - **Metric:** Various, refer to task tabs
1170
+ - **Languages:** Chinese
1171
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1172
+ """)
1173
+ with gr.Row():
1174
+ data_overall_zh = gr.components.Dataframe(
1175
+ DATA_OVERALL_ZH,
1176
+ datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns),
1177
+ type="pandas",
1178
+ wrap=True,
1179
+ )
1180
+ with gr.Row():
1181
+ data_run_overall_zh = gr.Button("Refresh")
1182
+ data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
1183
+ with gr.TabItem("Polish"):
1184
+ with gr.Row():
1185
+ gr.Markdown("""
1186
+ **Overall MTEB Polish leaderboard (PL-MTEB)** 🔮🇵🇱
1187
+
1188
+ - **Metric:** Various, refer to task tabs
1189
+ - **Languages:** Polish
1190
+ - **Credits:** [Rafał Poświata](https://github.com/rafalposwiata), [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
1191
+ """)
1192
+ with gr.Row():
1193
+ data_overall_pl = gr.components.Dataframe(
1194
+ DATA_OVERALL_PL,
1195
+ datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_PL.columns),
1196
+ type="pandas",
1197
+ wrap=True,
1198
+ )
1199
+ with gr.Row():
1200
+ data_run_overall_pl = gr.Button("Refresh")
1201
+ data_run_overall_pl.click(get_mteb_average_pl, inputs=None, outputs=data_overall_pl)
1202
+ with gr.TabItem("Bitext Mining"):
1203
+ with gr.TabItem("English-X"):
1204
+ with gr.Row():
1205
+ gr.Markdown("""
1206
+ **Bitext Mining English-X Leaderboard** 🎌
1207
+
1208
+ - **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
1209
+ - **Languages:** 117 (Pairs of: English & other language)
1210
+ """)
1211
+ with gr.Row():
1212
+ data_bitext_mining = gr.components.Dataframe(
1213
+ DATA_BITEXT_MINING,
1214
+ datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
1215
+ type="pandas",
1216
+ )
1217
+ with gr.Row():
1218
+ data_run_bitext_mining = gr.Button("Refresh")
1219
+ data_run_bitext_mining.click(
1220
+ partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
1221
+ outputs=data_bitext_mining,
1222
+ )
1223
+ with gr.TabItem("Danish"):
1224
+ with gr.Row():
1225
+ gr.Markdown("""
1226
+ **Bitext Mining Danish Leaderboard** 🎌🇩🇰
1227
+
1228
+ - **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
1229
+ - **Languages:** Danish & Bornholmsk (Danish Dialect)
1230
+ - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
1231
+ """)
1232
+ with gr.Row():
1233
+ data_bitext_mining_da = gr.components.Dataframe(
1234
+ DATA_BITEXT_MINING_OTHER,
1235
+ datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns),
1236
+ type="pandas",
1237
+ )
1238
+ with gr.Row():
1239
+ data_run_bitext_mining_da = gr.Button("Refresh")
1240
+ data_run_bitext_mining_da.click(
1241
+ partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_OTHER),
1242
+ outputs=data_bitext_mining_da,
1243
+ )
1244
+ with gr.TabItem("Classification"):
1245
+ with gr.TabItem("English"):
1246
+ with gr.Row():
1247
+ gr.Markdown("""
1248
+ **Classification English Leaderboard** ❤️
1249
+
1250
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1251
+ - **Languages:** English
1252
+ """)
1253
+ with gr.Row():
1254
+ data_classification_en = gr.components.Dataframe(
1255
+ DATA_CLASSIFICATION_EN,
1256
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
1257
+ type="pandas",
1258
+ )
1259
+ with gr.Row():
1260
+ data_run_classification_en = gr.Button("Refresh")
1261
+ data_run_classification_en.click(
1262
+ partial(get_mteb_data, tasks=["Classification"], langs=["en"]),
1263
+ outputs=data_classification_en,
1264
+ )
1265
+ with gr.TabItem("Chinese"):
1266
+ with gr.Row():
1267
+ gr.Markdown("""
1268
+ **Classification Chinese Leaderboard** 🧡🇨🇳
1269
+
1270
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1271
+ - **Languages:** Chinese
1272
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1273
+ """)
1274
+ with gr.Row():
1275
+ data_classification_zh = gr.components.Dataframe(
1276
+ DATA_CLASSIFICATION_ZH,
1277
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
1278
+ type="pandas",
1279
+ )
1280
+ with gr.Row():
1281
+ data_run_classification_zh = gr.Button("Refresh")
1282
+ data_run_classification_zh.click(
1283
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH),
1284
+ outputs=data_classification_zh,
1285
+ )
1286
+ with gr.TabItem("Danish"):
1287
+ with gr.Row():
1288
+ gr.Markdown("""
1289
+ **Classification Danish Leaderboard** 🤍🇩🇰
1290
+
1291
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1292
+ - **Languages:** Danish
1293
+ - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
1294
+ """)
1295
+ with gr.Row():
1296
+ data_classification_da = gr.components.Dataframe(
1297
+ DATA_CLASSIFICATION_DA,
1298
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
1299
+ type="pandas",
1300
+ )
1301
+ with gr.Row():
1302
+ data_run_classification_da = gr.Button("Refresh")
1303
+ data_run_classification_da.click(
1304
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
1305
+ outputs=data_run_classification_da,
1306
+ )
1307
+ with gr.TabItem("Norwegian"):
1308
+ with gr.Row():
1309
+ gr.Markdown("""
1310
+ **Classification Norwegian Leaderboard** 💙🇳🇴
1311
+
1312
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1313
+ - **Languages:** Norwegian Bokmål
1314
+ - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
1315
+ """)
1316
+ with gr.Row():
1317
+ data_classification_nb = gr.components.Dataframe(
1318
+ DATA_CLASSIFICATION_NB,
1319
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
1320
+ type="pandas",
1321
+ )
1322
+ with gr.Row():
1323
+ data_run_classification_nb = gr.Button("Refresh")
1324
+ data_run_classification_nb.click(
1325
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB),
1326
+ outputs=data_classification_nb,
1327
+ )
1328
+ with gr.TabItem("Polish"):
1329
+ with gr.Row():
1330
+ gr.Markdown("""
1331
+ **Classification Polish Leaderboard** 🤍🇵🇱
1332
+
1333
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1334
+ - **Languages:** Polish
1335
+ - **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
1336
+ """)
1337
+ with gr.Row():
1338
+ data_classification_pl = gr.components.Dataframe(
1339
+ DATA_CLASSIFICATION_PL,
1340
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_PL.columns),
1341
+ type="pandas",
1342
+ )
1343
+ with gr.Row():
1344
+ data_run_classification_pl = gr.Button("Refresh")
1345
+ data_run_classification_pl.click(
1346
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL),
1347
+ outputs=data_classification_pl,
1348
+ )
1349
+ with gr.TabItem("Swedish"):
1350
+ with gr.Row():
1351
+ gr.Markdown("""
1352
+ **Classification Swedish Leaderboard** 💛🇸🇪
1353
+
1354
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1355
+ - **Languages:** Swedish
1356
+ - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
1357
+ """)
1358
+ with gr.Row():
1359
+ data_classification_sv = gr.components.Dataframe(
1360
+ DATA_CLASSIFICATION_SV,
1361
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
1362
+ type="pandas",
1363
+ )
1364
+ with gr.Row():
1365
+ data_run_classification_sv = gr.Button("Refresh")
1366
+ data_run_classification_sv.click(
1367
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV),
1368
+ outputs=data_classification_sv,
1369
+ )
1370
+ with gr.TabItem("Other"):
1371
+ with gr.Row():
1372
+ gr.Markdown("""
1373
+ **Classification Other Languages Leaderboard** 💜💚💙
1374
+
1375
+ - **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
1376
+ - **Languages:** 47 (Only languages not included in the other tabs)
1377
+ """)
1378
+ with gr.Row():
1379
+ data_classification = gr.components.Dataframe(
1380
+ DATA_CLASSIFICATION_OTHER,
1381
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
1382
+ type="pandas",
1383
+ )
1384
+ with gr.Row():
1385
+ data_run_classification = gr.Button("Refresh")
1386
+ data_run_classification.click(
1387
+ partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER),
1388
+ outputs=data_classification,
1389
+ )
1390
+ with gr.TabItem("Clustering"):
1391
+ with gr.TabItem("English"):
1392
+ with gr.Row():
1393
+ gr.Markdown("""
1394
+ **Clustering Leaderboard** ✨
1395
+
1396
+ - **Metric:** Validity Measure (v_measure)
1397
+ - **Languages:** English
1398
+ """)
1399
+ with gr.Row():
1400
+ data_clustering = gr.components.Dataframe(
1401
+ DATA_CLUSTERING,
1402
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
1403
+ type="pandas",
1404
+ )
1405
+ with gr.Row():
1406
+ data_run_clustering_en = gr.Button("Refresh")
1407
+ data_run_clustering_en.click(
1408
+ partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING),
1409
+ outputs=data_clustering,
1410
+ )
1411
+ with gr.TabItem("Chinese"):
1412
+ with gr.Row():
1413
+ gr.Markdown("""
1414
+ **Clustering Chinese Leaderboard** ✨🇨🇳
1415
+
1416
+ - **Metric:** Validity Measure (v_measure)
1417
+ - **Languages:** Chinese
1418
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1419
+ """)
1420
+ with gr.Row():
1421
+ data_clustering_zh = gr.components.Dataframe(
1422
+ DATA_CLUSTERING_ZH,
1423
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
1424
+ type="pandas",
1425
+ )
1426
+ with gr.Row():
1427
+ data_run_clustering_zh = gr.Button("Refresh")
1428
+ data_run_clustering_zh.click(
1429
+ partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
1430
+ outputs=data_clustering_zh,
1431
+ )
1432
+ with gr.TabItem("German"):
1433
+ with gr.Row():
1434
+ gr.Markdown("""
1435
+ **Clustering German Leaderboard** ✨🇩🇪
1436
+
1437
+ - **Metric:** Validity Measure (v_measure)
1438
+ - **Languages:** German
1439
+ - **Credits:** [Silvan](https://github.com/slvnwhrl)
1440
+ """)
1441
+ with gr.Row():
1442
+ data_clustering_de = gr.components.Dataframe(
1443
+ DATA_CLUSTERING_DE,
1444
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
1445
+ type="pandas",
1446
+ )
1447
+ with gr.Row():
1448
+ data_run_clustering_de = gr.Button("Refresh")
1449
+ data_run_clustering_de.click(
1450
+ partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE),
1451
+ outputs=data_clustering_de,
1452
+ )
1453
+ with gr.TabItem("Polish"):
1454
+ with gr.Row():
1455
+ gr.Markdown("""
1456
+ **Clustering Polish Leaderboard** ✨🇵🇱
1457
+
1458
+ - **Metric:** Validity Measure (v_measure)
1459
+ - **Languages:** Polish
1460
+ - **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
1461
+ """)
1462
+ with gr.Row():
1463
+ data_clustering_pl = gr.components.Dataframe(
1464
+ DATA_CLUSTERING_PL,
1465
+ datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_PL.columns) * 2,
1466
+ type="pandas",
1467
+ )
1468
+ with gr.Row():
1469
+ data_run_clustering_pl = gr.Button("Refresh")
1470
+ data_run_clustering_pl.click(
1471
+ partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL),
1472
+ outputs=data_clustering_pl,
1473
+ )
1474
+ with gr.TabItem("Pair Classification"):
1475
+ with gr.TabItem("English"):
1476
+ with gr.Row():
1477
+ gr.Markdown("""
1478
+ **Pair Classification English Leaderboard** 🎭
1479
+
1480
+ - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
1481
+ - **Languages:** English
1482
+ """)
1483
+ with gr.Row():
1484
+ data_pair_classification = gr.components.Dataframe(
1485
+ DATA_PAIR_CLASSIFICATION,
1486
+ datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
1487
+ type="pandas",
1488
+ )
1489
+ with gr.Row():
1490
+ data_run_pair_classification = gr.Button("Refresh")
1491
+ data_run_pair_classification.click(
1492
+ partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION),
1493
+ outputs=data_pair_classification,
1494
+ )
1495
+ with gr.TabItem("Chinese"):
1496
+ with gr.Row():
1497
+ gr.Markdown("""
1498
+ **Pair Classification Chinese Leaderboard** 🎭🇨🇳
1499
+
1500
+ - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
1501
+ - **Languages:** Chinese
1502
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1503
+ """)
1504
+ with gr.Row():
1505
+ data_pair_classification_zh = gr.components.Dataframe(
1506
+ DATA_PAIR_CLASSIFICATION_ZH,
1507
+ datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
1508
+ type="pandas",
1509
+ )
1510
+ with gr.Row():
1511
+ data_run_pair_classification_zh = gr.Button("Refresh")
1512
+ data_run_pair_classification_zh.click(
1513
+ partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
1514
+ outputs=data_pair_classification_zh,
1515
+ )
1516
+ with gr.TabItem("Polish"):
1517
+ with gr.Row():
1518
+ gr.Markdown("""
1519
+ **Pair Classification Polish Leaderboard** 🎭🇵🇱
1520
+
1521
+ - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
1522
+ - **Languages:** Polish
1523
+ - **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
1524
+ """)
1525
+ with gr.Row():
1526
+ data_pair_classification_pl = gr.components.Dataframe(
1527
+ DATA_PAIR_CLASSIFICATION_PL,
1528
+ datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_PL.columns),
1529
+ type="pandas",
1530
+ )
1531
+ with gr.Row():
1532
+ data_run_pair_classification_pl = gr.Button("Refresh")
1533
+ data_run_pair_classification_pl.click(
1534
+ partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL),
1535
+ outputs=data_pair_classification_pl,
1536
+ )
1537
+ with gr.TabItem("Reranking"):
1538
+ with gr.TabItem("English"):
1539
+ with gr.Row():
1540
+ gr.Markdown("""
1541
+ **Reranking English Leaderboard** 🥈
1542
+
1543
+ - **Metric:** Mean Average Precision (MAP)
1544
+ - **Languages:** English
1545
+ """)
1546
+ with gr.Row():
1547
+ data_reranking = gr.components.Dataframe(
1548
+ DATA_RERANKING,
1549
+ datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
1550
+ type="pandas",
1551
+ )
1552
+ with gr.Row():
1553
+ data_run_reranking = gr.Button("Refresh")
1554
+ data_run_reranking.click(
1555
+ partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING),
1556
+ outputs=data_reranking,
1557
+ )
1558
+ with gr.TabItem("Chinese"):
1559
+ with gr.Row():
1560
+ gr.Markdown("""
1561
+ **Reranking Chinese Leaderboard** 🥈🇨🇳
1562
+
1563
+ - **Metric:** Mean Average Precision (MAP)
1564
+ - **Languages:** Chinese
1565
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1566
+ """)
1567
+ with gr.Row():
1568
+ data_reranking_zh = gr.components.Dataframe(
1569
+ DATA_RERANKING_ZH,
1570
+ datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
1571
+ type="pandas",
1572
+ )
1573
+ with gr.Row():
1574
+ data_run_reranking_zh = gr.Button("Refresh")
1575
+ data_run_reranking_zh.click(
1576
+ partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
1577
+ outputs=data_reranking_zh,
1578
+ )
1579
+ with gr.TabItem("Retrieval"):
1580
+ with gr.TabItem("English"):
1581
+ with gr.Row():
1582
+ gr.Markdown("""
1583
+ **Retrieval English Leaderboard** 🔎
1584
+
1585
+ - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
1586
+ - **Languages:** English
1587
+ """)
1588
+ with gr.Row():
1589
+ data_retrieval = gr.components.Dataframe(
1590
+ DATA_RETRIEVAL,
1591
+ # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
1592
+ datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
1593
+ type="pandas",
1594
+ )
1595
+ with gr.Row():
1596
+ data_run_retrieval = gr.Button("Refresh")
1597
+ data_run_retrieval.click(
1598
+ partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL),
1599
+ outputs=data_retrieval,
1600
+ )
1601
+ with gr.TabItem("Chinese"):
1602
+ with gr.Row():
1603
+ gr.Markdown("""
1604
+ **Retrieval Chinese Leaderboard** 🔎🇨🇳
1605
+
1606
+ - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
1607
+ - **Languages:** Chinese
1608
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1609
+ """)
1610
+ with gr.Row():
1611
+ data_retrieval_zh = gr.components.Dataframe(
1612
+ DATA_RETRIEVAL_ZH,
1613
+ # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
1614
+ datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
1615
+ type="pandas",
1616
+ )
1617
+ with gr.Row():
1618
+ data_run_retrieval_zh = gr.Button("Refresh")
1619
+ data_run_retrieval_zh.click(
1620
+ partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH),
1621
+ outputs=data_retrieval_zh,
1622
+ )
1623
+ with gr.TabItem("Polish"):
1624
+ with gr.Row():
1625
+ gr.Markdown("""
1626
+ **Retrieval Polish Leaderboard** 🔎🇵🇱
1627
+
1628
+ - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
1629
+ - **Languages:** Polish
1630
+ - **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
1631
+ """)
1632
+ with gr.Row():
1633
+ data_retrieval_pl = gr.components.Dataframe(
1634
+ DATA_RETRIEVAL_PL,
1635
+ # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
1636
+ datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2,
1637
+ type="pandas",
1638
+ )
1639
+ with gr.Row():
1640
+ data_run_retrieval_pl = gr.Button("Refresh")
1641
+ data_run_retrieval_pl.click(
1642
+ partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL),
1643
+ outputs=data_retrieval_pl,
1644
+ )
1645
+ with gr.TabItem("STS"):
1646
+ with gr.TabItem("English"):
1647
+ with gr.Row():
1648
+ gr.Markdown("""
1649
+ **STS English Leaderboard** 🤖
1650
+
1651
+ - **Metric:** Spearman correlation based on cosine similarity
1652
+ - **Languages:** English
1653
+ """)
1654
+ with gr.Row():
1655
+ data_sts_en = gr.components.Dataframe(
1656
+ DATA_STS_EN,
1657
+ datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns),
1658
+ type="pandas",
1659
+ )
1660
+ with gr.Row():
1661
+ data_run_sts_en = gr.Button("Refresh")
1662
+ data_run_sts_en.click(
1663
+ partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS),
1664
+ outputs=data_sts_en,
1665
+ )
1666
+ with gr.TabItem("Chinese"):
1667
+ with gr.Row():
1668
+ gr.Markdown("""
1669
+ **STS Chinese Leaderboard** 🤖🇨🇳
1670
+
1671
+ - **Metric:** Spearman correlation based on cosine similarity
1672
+ - **Languages:** Chinese
1673
+ - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
1674
+ """)
1675
+ with gr.Row():
1676
+ data_sts_zh = gr.components.Dataframe(
1677
+ DATA_STS_ZH,
1678
+ datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
1679
+ type="pandas",
1680
+ )
1681
+ with gr.Row():
1682
+ data_run_sts_zh = gr.Button("Refresh")
1683
+ data_run_sts_zh.click(
1684
+ partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
1685
+ outputs=data_sts_zh,
1686
+ )
1687
+ with gr.TabItem("Polish"):
1688
+ with gr.Row():
1689
+ gr.Markdown("""
1690
+ **STS Polish Leaderboard** 🤖🇵🇱
1691
+
1692
+ - **Metric:** Spearman correlation based on cosine similarity
1693
+ - **Languages:** Polish
1694
+ - **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
1695
+ """)
1696
+ with gr.Row():
1697
+ data_sts_pl = gr.components.Dataframe(
1698
+ DATA_STS_PL,
1699
+ datatype=["number", "markdown"] + ["number"] * len(DATA_STS_PL.columns),
1700
+ type="pandas",
1701
+ )
1702
+ with gr.Row():
1703
+ data_run_sts_pl = gr.Button("Refresh")
1704
+ data_run_sts_pl.click(
1705
+ partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL),
1706
+ outputs=data_sts_pl,
1707
+ )
1708
+ with gr.TabItem("Other"):
1709
+ with gr.Row():
1710
+ gr.Markdown("""
1711
+ **STS Other Leaderboard** 👽
1712
+
1713
+ - **Metric:** Spearman correlation based on cosine similarity
1714
+ - **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
1715
+ """)
1716
+ with gr.Row():
1717
+ data_sts_other = gr.components.Dataframe(
1718
+ DATA_STS_OTHER,
1719
+ datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
1720
+ type="pandas",
1721
+ )
1722
+ with gr.Row():
1723
+ data_run_sts_other = gr.Button("Refresh")
1724
+ data_run_sts_other.click(
1725
+ partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER),
1726
+ outputs=data_sts_other,
1727
+ )
1728
+ with gr.TabItem("Summarization"):
1729
+ with gr.Row():
1730
+ gr.Markdown("""
1731
+ **Summarization Leaderboard** 📜
1732
+
1733
+ - **Metric:** Spearman correlation based on cosine similarity
1734
+ - **Languages:** English
1735
+ """)
1736
+ with gr.Row():
1737
+ data_summarization = gr.components.Dataframe(
1738
+ DATA_SUMMARIZATION,
1739
+ datatype=["number", "markdown"] + ["number"] * 2,
1740
+ type="pandas",
1741
+ )
1742
+ with gr.Row():
1743
+ data_run = gr.Button("Refresh")
1744
+ data_run.click(
1745
+ partial(get_mteb_data, tasks=["Summarization"]),
1746
+ outputs=data_summarization,
1747
+ )
1748
+ gr.Markdown(r"""
1749
+
1750
+ Made with ❤️ for NLP. If this work is useful to you, please consider citing:
1751
+
1752
+ ```bibtex
1753
+ @article{muennighoff2022mteb,
1754
+ doi = {10.48550/ARXIV.2210.07316},
1755
+ url = {https://arxiv.org/abs/2210.07316},
1756
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
1757
+ title = {MTEB: Massive Text Embedding Benchmark},
1758
+ publisher = {arXiv},
1759
+ journal={arXiv preprint arXiv:2210.07316},
1760
+ year = {2022}
1761
+ }
1762
+ ```
1763
+ """)
1764
+ # Running the functions on page load in addition to when the button is clicked
1765
+ # This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
1766
+ """
1767
+ block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
1768
+ """
1769
+
1770
+ block.queue(max_size=10)
1771
+ block.launch()
1772
+
1773
+
1774
+ # Possible changes:
1775
+ # Could add graphs / other visual content
1776
+ # Could add verification marks
1777
+
1778
+ # Sources:
1779
+ # https://huggingface.co/spaces/gradio/leaderboard
1780
+ # https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
1781
+ # https://getemoji.com/
download_data.py DELETED
@@ -1,3 +0,0 @@
1
- from mteb.leaderboard.app import load_results
2
-
3
- load_results()
 
 
 
 
main.py DELETED
@@ -1,6 +0,0 @@
1
- from mteb.leaderboard.app import demo
2
-
3
- demo.launch(server_name="0.0.0.0", server_port=7860)
4
-
5
- # Please leave this here; only add but do not remove
6
- UNUSED = ['michaelfeil/ct2fast-e5-large-v2','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse','newsrx/instructor-xl','sionic-ai/sionic-ai-v1','lsf1000/bge-evaluation','Intel/bge-small-en-v1.5-sst2','newsrx/instructor-xl-newsrx','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse','davidpeer/gte-small','goldenrooster/multilingual-e5-large','kozistr/fused-large-en','mixamrepijey/instructor-small','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised','DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext','Intel/bge-base-en-v1.5-sst2-int8-dynamic','morgendigital/multilingual-e5-large-quantized','BAAI/bge-small-en','ggrn/e5-small-v2','vectoriseai/gte-small','giulio98/placeholder','odunola/UAE-Large-VI','vectoriseai/e5-large-v2','gruber/e5-small-v2-ggml','Severian/nomic','arcdev/e5-mistral-7b-instruct','mlx-community/multilingual-e5-base-mlx','michaelfeil/ct2fast-bge-base-en-v1.5','Intel/bge-small-en-v1.5-sst2-int8-static','jncraton/stella-base-en-v2-ct2-int8','vectoriseai/multilingual-e5-large','rlsChapters/Chapters-SFR-Embedding-Mistral','arcdev/SFR-Embedding-Mistral','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised','vectoriseai/gte-base','mixamrepijey/instructor-models','GovCompete/e5-large-v2','ef-zulla/e5-multi-sml-torch','khoa-klaytn/bge-small-en-v1.5-angle','krilecy/e5-mistral-7b-instruct','vectoriseai/bge-base-en-v1.5','vectoriseai/instructor-base','jingyeom/korean_embedding_model','rizki/bgr-tf','barisaydin/bge-base-en','jamesgpt1/zzz','Malmuk1/e5-large-v2_Sharded','vectoriseai/ember-v1','Consensus/instructor-base','barisaydin/bge-small-en','barisaydin/gte-base','woody72/multilingual-e5-base','Einas/einas_ashkar','michaelfeil/ct2fast-bge-large-en-v1.5','vectoriseai/bge-small-en-v1.5','iampanda/Test','cherubhao/yogamodel','ieasybooks/multilingual-e5-large-onnx','jncraton/e5-small-v2-ct2-int8','radames/e5-large','khoa-klaytn/bge-base-en-v1.5-angle','Intel/bge-base-en-v1.5-sst2-int8-static','vectoriseai/e5-large','TitanML/jina-v2-base-en-embed','Koat/gte-tiny','binqiangliu/EmbeddingModlebgelargeENv1.5','beademiguelperez/sentence-transformers-multilingual-e5-small','sionic-ai/sionic-ai-v2','jamesdborin/jina-v2-base-en-embed','maiyad/multilingual-e5-small','dmlls/all-mpnet-base-v2','odunola/e5-base-v2','vectoriseai/bge-large-en-v1.5','vectoriseai/bge-small-en','karrar-alwaili/UAE-Large-V1','t12e/instructor-base','Frazic/udever-bloom-3b-sentence','Geolumina/instructor-xl','hsikchi/dump','recipe/embeddings','michaelfeil/ct2fast-bge-small-en-v1.5','ildodeltaRule/multilingual-e5-large','shubham-bgi/UAE-Large','BAAI/bge-large-en','michaelfeil/ct2fast-e5-small-v2','cgldo/semanticClone','barisaydin/gte-small','aident-ai/bge-base-en-onnx','jamesgpt1/english-large-v1','michaelfeil/ct2fast-e5-small','baseplate/instructor-large-1','newsrx/instructor-large','Narsil/bge-base-en','michaelfeil/ct2fast-e5-large','mlx-community/multilingual-e5-small-mlx','lightbird-ai/nomic','MaziyarPanahi/GritLM-8x7B-GGUF','newsrx/instructor-large-newsrx','dhairya0907/thenlper-get-large','barisaydin/bge-large-en','jncraton/bge-small-en-ct2-int8','retrainai/instructor-xl','BAAI/bge-base-en','gentlebowl/instructor-large-safetensors','d0rj/e5-large-en-ru','atian-chapters/Chapters-SFR-Embedding-Mistral','Intel/bge-base-en-v1.5-sts-int8-static','Intel/bge-base-en-v1.5-sts-int8-dynamic','jncraton/GIST-small-Embedding-v0-ct2-int8','jncraton/gte-tiny-ct2-int8','d0rj/e5-small-en-ru','vectoriseai/e5-small-v2','SmartComponents/bge-micro-v2','michaelfeil/ct2fast-gte-base','vectoriseai/e5-base-v2','Intel/bge-base-en-v1.5-sst2','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised','Research2NLP/electrical_stella','weakit-v/bge-base-en-v1.5-onnx','GovCompete/instructor-xl','barisaydin/text2vec-base-multilingual','Intel/bge-small-en-v1.5-sst2-int8-dynamic','jncraton/gte-small-ct2-int8','d0rj/e5-base-en-ru','barisaydin/gte-large','fresha/e5-large-v2-endpoint','vectoriseai/instructor-large','Severian/embed','vectoriseai/e5-base','mlx-community/multilingual-e5-large-mlx','vectoriseai/gte-large','anttip/ct2fast-e5-small-v2-hfie','michaelfeil/ct2fast-gte-large','gizmo-ai/Cohere-embed-multilingual-v3.0','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse','Kenknight1999/tungdd7_ft_e5','joteqwork/new_gsev0','vantagediscovery/jina-embeddings-v2-base-en','vantagediscovery/nomic-embed-text-v1','vantagediscovery/nomic-embed-text-v1.5','srikanthmalla/hkunlp-instructor-xl','afrideva/GIST-all-MiniLM-L6-v2-GGUF','nadeem1362/mxbai-embed-large-v1-Q4_K_M-GGUF','agier9/gte-Qwen1.5-7B-instruct-Q5_K_M-GGUF','ekorman-strive/bge-large-en-v1.5','raghavlight/SE_v1','liddlefish/privacyembeddingv2_bge_small','ahmet1338/finetuned_embedder','radia/snowflake-arctic-embed-l-Q4_K_M-GGUF','GregorBiswanger/GritLM-7B-Q4_K_M-GGUF','powermove72/GritLM-7B-Q4_K_M-GGUF','sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF','nazimali/gte-Qwen2-7B-instruct-Q6_K-GGUF','nazimali/gte-Qwen2-7B-instruct-Q6_K-GGUF','fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF','tobchef/gte-Qwen2-1.5B-instruct-Q4_K_M-GGUF','liddlefish/privacy_embedding_rag','liddlefish/privacy_embedding_rag_10k_tmp','liddlefish/privacy_embedding_bge_small_synthetic','mxs980/gte-Qwen2-1.5B-instruct-Q8_0-GGUF','leonn71/gte-Qwen2-1.5B-instruct-Q6_K-GGUF', 'Baichuan-text-embedding','Cohere-embed-english-v3.0','Cohere-embed-multilingual-light-v3.0','Cohere-embed-multilingual-v3.0','DanskBERT','FollowIR-7B','GritLM-7B','LASER2','LLM2Vec-Llama-2-supervised','LLM2Vec-Llama-2-unsupervised','LLM2Vec-Meta-Llama-3-supervised','LLM2Vec-Meta-Llama-3-unsupervised','LLM2Vec-Mistral-supervised','LLM2Vec-Mistral-unsupervised','LLM2Vec-Sheared-Llama-supervised','LLM2Vec-Sheared-Llama-unsupervised','LaBSE','OpenSearch-text-hybrid','SFR-Embedding-Mistral','all-MiniLM-L12-v2','all-MiniLM-L6-v2','all-mpnet-base-v2','allenai-specter','bert-base-10lang-cased','bert-base-15lang-cased','bert-base-25lang-cased','bert-base-multilingual-cased','bert-base-multilingual-uncased','bert-base-swedish-cased','bert-base-uncased','bge-base-zh-v1.5','bge-large-en-v1.5','bge-large-zh-noinstruct','bge-large-zh-v1.5','bge-m3','bge-small-zh-v1.5','bm25','camembert-base','camembert-large','contriever-base-msmarco','cross-en-de-roberta-sentence-transformer','dfm-encoder-large-v1','dfm-sentence-encoder-large-1','distilbert-base-25lang-cased','distilbert-base-en-fr-cased','distilbert-base-en-fr-es-pt-it-cased','distilbert-base-fr-cased','distilbert-base-uncased','distiluse-base-multilingual-cased-v2','e5-base-4k','e5-base-v2','e5-base','e5-large-v2','e5-large','e5-mistral-7b-instruct','e5-small','electra-small-nordic','electra-small-swedish-cased-discriminator','elser-v2','flan-t5-base','flan-t5-large','flaubert_base_cased','flaubert_base_uncased','flaubert_large_cased','gbert-base','gbert-large','gelectra-base','gelectra-large','glove.6B.300d','google-gecko-256.text-embedding-004','google-gecko.text-embedding-004','gottbert-base','gte-Qwen1.5-7B-instruct','gte-Qwen2-7B-instruct','gtr-t5-base','gtr-t5-large','gtr-t5-xl','gtr-t5-xxl','herbert-base-retrieval-v2','instructor-base','instructor-large','instructor-xl','jina-embeddings-v2-base-en','komninos','llama-2-7b-chat','luotuo-bert-medium','m3e-base','m3e-large','mistral-7b-instruct-v0.2','mistral-embed','monobert-large-msmarco','monot5-3b-msmarco-10k','monot5-base-msmarco-10k','msmarco-bert-co-condensor','multi-qa-MiniLM-L6-cos-v1','multilingual-e5-base','multilingual-e5-large','multilingual-e5-small','nb-bert-base','nb-bert-large','nomic-embed-text-v1','nomic-embed-text-v1.5-128','nomic-embed-text-v1.5-256','nomic-embed-text-v1.5-512','nomic-embed-text-v1.5-64','norbert3-base','norbert3-large','paraphrase-multilingual-MiniLM-L12-v2','paraphrase-multilingual-mpnet-base-v2','sentence-bert-swedish-cased','sentence-camembert-base','sentence-camembert-large','sentence-croissant-llm-base','sentence-t5-base','sentence-t5-large','sentence-t5-xl','sentence-t5-xxl','silver-retriever-base-v1','st-polish-paraphrase-from-distilroberta','st-polish-paraphrase-from-mpnet','sup-simcse-bert-base-uncased','text-embedding-3-large','text-embedding-3-large-256','text-embedding-3-small','text-embedding-ada-002','text-search-ada-001','text-search-ada-doc-001','text-search-ada-query-001','text-search-babbage-001','text-search-curie-001','text-search-davinci-001','text-similarity-ada-001','text-similarity-babbage-001','text-similarity-curie-001','text-similarity-davinci-001','tart-dual-contriever-msmarco','tart-full-flan-t5-xl','text2vec-base-chinese','text2vec-base-multilingual','text2vec-large-chinese','titan-embed-text-v1','udever-bloom-1b1','udever-bloom-560m','universal-sentence-encoder-multilingual-3','universal-sentence-encoder-multilingual-large-3','unsup-simcse-bert-base-uncased','use-cmlm-multilingual','voyage-2','voyage-code-2','voyage-large-2-instruct','voyage-law-2','voyage-lite-01-instruct','voyage-lite-02-instruct','voyage-multilingual-2','xlm-roberta-base','xlm-roberta-large','NV-Retriever-v1','NV-Embed-v1','Linq-Embed-Mistral','Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit','Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit','Muennighoff/SGPT-125M-weightedmean-nli-bitfit','Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit','Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit','Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit','DMetaSoul/sbert-chinese-general-v1','bigscience-data/sgpt-bloom-1b7-nli','bigscience/sgpt-bloom-7b1-msmarco','aari1995/German_Semantic_STS_V2','intfloat/e5-small','hkunlp/instructor-large','hkunlp/instructor-base','hkunlp/instructor-xl','intfloat/e5-base','intfloat/e5-large','Shimin/yiyouliao','vprelovac/universal-sentence-encoder-multilingual-large-3','vprelovac/universal-sentence-encoder-multilingual-3','vprelovac/universal-sentence-encoder-4','vprelovac/universal-sentence-encoder-large-5','ManiShankar-AlpesAi/paraphrase-multilingual-mpnet-base-v2-KE_Sieve','nickprock/mmarco-bert-base-italian-uncased','intfloat/e5-small-v2','intfloat/e5-base-v2','intfloat/e5-large-v2','intfloat/multilingual-e5-base','Shimin/LLaMA-embeeding','Forbu14/openai_clip_embeddings','shibing624/text2vec-base-multilingual','consciousAI/cai-lunaris-text-embeddings','consciousAI/cai-stellaris-text-embeddings','intfloat/multilingual-e5-small','intfloat/multilingual-e5-large','jinaai/jina-embedding-s-en-v1','jinaai/jina-embedding-b-en-v1','jinaai/jina-embedding-l-en-v1','deepfile/embedder-100p','lixsh6/XLM-3B5-embedding','lixsh6/XLM-0B6-embedding','thenlper/gte-base','thenlper/gte-large','thenlper/gte-small','lixsh6/MegatronBert-1B3-embedding','facebook/SONAR','Hum-Works/lodestone-base-4096-v1','sensenova/piccolo-base-zh','sensenova/piccolo-large-zh','infgrad/stella-base-zh','infgrad/stella-large-zh','BAAI/bge-reranker-base','BAAI/bge-base-en-v1.5','BAAI/bge-large-en-v1.5','BAAI/bge-small-en-v1.5','BAAI/bge-reranker-large','mgoin/all-MiniLM-L6-v2-ds','neuralmagic/bge-small-en-v1.5-sparse','jinaai/jina-embeddings-v2-base-en','jinaai/jina-embeddings-v2-small-en','neuralmagic/bge-small-en-v1.5-quant','nickprock/stsbm-sentence-flare-it','nickprock/mmarco-sentence-flare-it','neuralmagic/bge-base-en-v1.5-sparse','neuralmagic/bge-base-en-v1.5-quant','neuralmagic/bge-large-en-v1.5-sparse','neuralmagic/bge-large-en-v1.5-quant','TaylorAI/gte-tiny','TaylorAI/bge-micro','llmrails/ember-v1','TaylorAI/bge-micro-v2','zeroshot/gte-small-quant','infgrad/stella-large-zh-v2','infgrad/stella-base-zh-v2','zeroshot/gte-large-quant','zeroshot/gte-large-sparse','EdwardBurgin/paraphrase-multilingual-mpnet-base-v2','Amu/tao','infgrad/stella-base-en-v2','djovak/multi-qa-MiniLM-L6-cos-v1','izhx/udever-bloom-560m','izhx/udever-bloom-1b1','izhx/udever-bloom-3b','izhx/udever-bloom-7b1','thtang/ALL_862873','andersonbcdefg/bge-small-4096','Cohere/Cohere-embed-multilingual-light-v3.0','Cohere/Cohere-embed-multilingual-v3.0','Cohere/Cohere-embed-english-light-v3.0','Cohere/Cohere-embed-english-v3.0','Amu/tao-8k','thenlper/gte-large-zh','thenlper/gte-base-zh','thenlper/gte-small-zh','jamesgpt1/sf_model_e5','OrlikB/st-polish-kartonberta-base-alpha-v1','TownsWu/PEG','sdadas/mmlw-e5-small','sdadas/mmlw-e5-base','sdadas/mmlw-e5-large','sdadas/mmlw-roberta-base','sdadas/mmlw-roberta-large','jinaai/jina-embeddings-v2-base-code','aws-neuron/bge-base-en-v1-5-seqlen-384-bs-1','Erin/mist-zh','ClayAtlas/winberta-base','Pristinenlp/alime-reranker-large-zh','WhereIsAI/UAE-Large-V1','OrdalieTech/Solon-embeddings-large-0.1','ClayAtlas/winberta-large','intfloat/e5-mistral-7b-instruct','liujiarik/lim_base_zh','RookieHX/bge_m3e_stella','akarum/cloudy-large-zh','zhou-xl/bi-cse','lier007/xiaobu-embedding','jinaai/jina-embeddings-v2-base-zh','jinaai/jina-embeddings-v2-base-de','nomic-ai/nomic-embed-text-v1-ablated','nomic-ai/nomic-embed-text-v1-unsupervised','mukaj/fin-mpnet-base','Pristinenlp/alime-embedding-large-zh','pascalhuerten/instructor-skillfit','jinaai/jina-embeddings-v2-base-es','Salesforce/SFR-Embedding-Mistral','DMetaSoul/Dmeta-embedding-zh','Xenova/jina-embeddings-v2-base-zh','Xenova/jina-embeddings-v2-base-de','avsolatorio/GIST-Embedding-v0','nomic-ai/nomic-embed-text-v1','avsolatorio/GIST-all-MiniLM-L6-v2','avsolatorio/GIST-small-Embedding-v0','biswa921/bge-m3','Jechto/e5-dansk-test-0.1','intfloat/multilingual-e5-large-instruct','tanmaylaud/ret-phi2-v0','nomic-ai/nomic-embed-text-v1.5','GritLM/GritLM-7B','GritLM/GritLM-8x7B','avsolatorio/GIST-large-Embedding-v0','ClayAtlas/windberta-large','infgrad/stella-base-zh-v3-1792d','dunzhang/stella-large-zh-v3-1792d','jspringer/echo-mistral-7b-instruct-lasttoken','dunzhang/stella-mrl-large-zh-v3.5-1792d','sentosa/ZNV-Embedding','Nehc/e5-large-ru','neofung/m3e-ernie-xbase-zh','mixedbread-ai/mxbai-embed-2d-large-v1','mixedbread-ai/mxbai-embed-large-v1','aspire/acge_text_embedding','manu/sentence_croissant_alpha_v0.1','wongctroman/hktv-fine-tuned-cloudy-large-zh-metaphor14','manu/sentence_croissant_alpha_v0.2','mradermacher/GritLM-8x7B-GGUF','jhu-clsp/FollowIR-7B','DMetaSoul/Dmeta-embedding-zh-small','dwzhu/e5-base-4k','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp','ChristianAzinn/uae-large-v1-gguf','ChristianAzinn/gist-large-embedding-v0-gguf','ChristianAzinn/bge-base-en-v1.5-gguf','ChristianAzinn/bge-small-en-v1.5-gguf','ChristianAzinn/bge-large-en-v1.5-gguf','ChristianAzinn/gte-base-gguf','ChristianAzinn/gte-large-gguf','ChristianAzinn/gte-small-gguf','ChristianAzinn/mxbai-embed-large-v1-gguf','ChristianAzinn/gist-small-embedding-v0-gguf','ChristianAzinn/e5-base-v2-gguf','ChristianAzinn/e5-large-v2-gguf','ChristianAzinn/e5-small-v2-gguf','ChristianAzinn/labse-gguf','srikanthmalla/BAAI-bge-reranker-large','Snowflake/snowflake-arctic-embed-m','manu/bge-m3-custom-fr','Snowflake/snowflake-arctic-embed-m-long','Snowflake/snowflake-arctic-embed-s','Snowflake/snowflake-arctic-embed-xs','Snowflake/snowflake-arctic-embed-l','ChristianAzinn/snowflake-arctic-embed-l-gguf','ChristianAzinn/snowflake-arctic-embed-m-long-GGUF','ChristianAzinn/snowflake-arctic-embed-m-gguf','ChristianAzinn/snowflake-arctic-embed-s-gguf','ChristianAzinn/snowflake-arctic-embed-xs-gguf','dwzhu/e5rope-base','pengql/checkpoint-9000','Alibaba-NLP/gte-base-en-v1.5','Alibaba-NLP/gte-large-en-v1.5','Alibaba-NLP/gte-Qwen1.5-7B-instruct','sensenova/piccolo-large-zh-v2','Mihaiii/gte-micro','NLPArtisan/qwen-1.8b-retrieval-test','Mihaiii/gte-micro-v2','Mihaiii/gte-micro-v3','Mihaiii/gte-micro-v4','Mihaiii/Taximetristi-2023','manu/sentence_croissant_alpha_v0.3','Mihaiii/Bulbasaur','Mihaiii/Ivysaur','manu/sentence_croissant_alpha_v0.4','Mihaiii/Venusaur','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp','amazon/Titan-text-embeddings-v2','Mihaiii/Squirtle','Mihaiii/Wartortle','avsolatorio/NoInstruct-small-Embedding-v0','Mihaiii/test24','Mihaiii/test25','yessilver/new_model','fine-tuned/jina-embeddings-v2-base-en-03052024-r5ez-webapp','fine-tuned/jina-embeddings-v2-base-en-03052024-c20v-webapp','fine-tuned/jina-embeddings-v2-base-en-03052024-x8ew-webapp','fine-tuned/jina-embeddings-v2-base-en-03052024-73xx-webapp','fine-tuned/jina-embeddings-v2-base-en-03052024-21on-webapp','fine-tuned/jina-embeddings-v2-base-en-03052024-0swb-webapp','corto-ai/nomic-embed-text-v1','fine-tuned/jina-embeddings-v2-base-en-06052024-lmgf-webapp','fine-tuned/jina-embeddings-v2-base-en-06052024-6bdu-webapp','fine-tuned/jina-embeddings-v2-base-en-06052024-5pdj-webapp','fine-tuned/jina-embeddings-v2-base-en-06052024-yl1z-webapp','fine-tuned/jina-embeddings-v2-base-en-652024-vsmg-webapp','fine-tuned/jina-embeddings-v2-base-en-06052024-ruwi-webapp','fine-tuned/test','fine-tuned/jina-embeddings-v2-base-code-06052024-mhal-webapp','fine-tuned/jina-embeddings-v2-base-en-562024-j9xx-webapp','fine-tuned/jina-embeddings-v2-base-en-572024-xg53-webapp','fine-tuned/jina-embeddings-v2-base-en-202457-oc31-webapp','fine-tuned/scientific_papers_from_arxiv','fine-tuned/coding','fine-tuned/very_specific_technical_questions_about_Ubuntu','fine-tuned/CMedQAv2-reranking-improved','Labib11/MUG-B-1.6','shhy1995/AGE_Hybrid','fine-tuned/jina-embeddings-v2-base-en-10052024-lns6-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-scientific-papers-from-arxiv','fine-tuned/jinaai_jina-embeddings-v2-base-code-askubuntu','fine-tuned/jinaai_jina-embeddings-v2-base-en-scidocs','fine-tuned/jinaai_jina-embeddings-v2-base-code-stackoverflow','fine-tuned/jina-embeddings-v2-base-en-5102024-kvgq-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-zh-CMedQAv2','fine-tuned/jina-embeddings-v2-base-code-11_05_2024-hbxc-webapp','fine-tuned/jina-embeddings-v2-base-en-5102024-h7o7-webapp','fine-tuned/CMedQAv2-3','michaelfeil/jina-embeddings-v2-base-code','fine-tuned/jina-embeddings-v2-base-en-2024512-wvj9-webapp','fine-tuned/jina-embeddings-v2-base-en-5122024-3toh-webapp','MoMonir/SFR-Embedding-Mistral-GGUF','technicolor/Angle_BERT','fine-tuned/jina-embeddings-v2-base-en-2024513-kkxa-webapp','fine-tuned/jina-embeddings-v2-base-en-13052024-35bv-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-code-jinaai_jina-embeddings-v2-base-cod','fine-tuned/jinaai_jina-embeddings-v2-base-en-jinaai_jina-embeddings-v2-base-en-sc','fine-tuned/jinaai_jina-embeddings-v2-base-zh-jinaai_jina-embeddings-v2-base-zh-CM','fine-tuned/jinaai_jina-embeddings-v2-base-zh-CMedQAv2-3','fine-tuned/scidocs','fine-tuned/askubuntu','fine-tuned/stackoverflow','fine-tuned/cmedqav2','fine-tuned/jina-embeddings-v2-base-en-13052024-ch9n-webapp','fine-tuned/askubuntu-c','fine-tuned/askubuntu-l','fine-tuned/scidocs-c','fine-tuned/stackoverflow-c','fine-tuned/cmedqav2-c','fine-tuned/norwegian-nli-triplets-c','AdrienB134/llm2vec-croissant-mntp','Erin/IYun-large-zh','fine-tuned/jina-embeddings-v2-base-en-14052024-5b5o-webapp','fine-tuned/jina-embeddings-v2-base-en-14052024-9xxb-webapp','fine-tuned/jina-embeddings-v2-base-en-14052024-afuz-webapp','fine-tuned/dutch-legal-c','AdrienB134/llm2vec-occiglot-mntp','fine-tuned/dutch-legal-c-64-24','w601sxs/b1ade-embed','fine-tuned/dutch-legal-c-1280-24','neofung/bge-reranker-large-1k','fine-tuned/askubuntu-c-128-24','fine-tuned/askubuntu-c-256-24','fine-tuned/stackoverflow-c-128-24','fine-tuned/cmedqav2-c-128-24','fine-tuned/scidocs-c-128-24','fine-tuned/dutch-legal-c-128-24','fine-tuned/scidocs-c-256-24','fine-tuned/stackoverflow-c-256-24','qihoo360/360Zhinao-search','fine-tuned/stackoverflow-c-64-24','fine-tuned/askubuntu-c-64-24','fine-tuned/scidocs-c-64-24','fine-tuned/cmedqav2-c-64-24','fine-tuned/jina-embeddings-v2-base-en-15052024-stsl-webapp','fine-tuned/jina-embeddings-v2-base-en-5152024-tsbl-webapp','fine-tuned/jina-embeddings-v2-base-en-5162024-o9um-webapp','fine-tuned/test-run','fine-tuned/stackoverflow-c-64-24-gpt-4o-2024-05-13','MoMonir/gte-Qwen1.5-7B-instruct-GGUF','fine-tuned/scidocs-c-64-24-gpt-4o-2024-05-133652','fine-tuned/askubuntu-c-64-24-gpt-4o-2024-05-135760','fine-tuned/stackoverflow-c-64-24-gpt-4o-2024-05-137765','fine-tuned/scidocs-c-64-24-gpt-4o-2024-05-13-46337','fine-tuned/askubuntu-c-64-24-gpt-4o-2024-05-131171','fine-tuned/scidocs-c-64-24-gpt-4o-2024-05-135334','fine-tuned/askubuntu-c-64-24-gpt-4o-2024-05-13-61285','fine-tuned/cmedqav2-c-64-24-gpt-4o-2024-05-13-50353','fine-tuned/jina-embeddings-v2-base-en-1752024-13s3-webapp','fine-tuned/jina-embeddings-v2-base-en-1752024-zdtc-webapp','fine-tuned/jina-embeddings-v2-base-en-17052024-uhub-webapp','neofung/bge-reranker-base-1k','fine-tuned/jina-embeddings-v2-base-en-17052024-dumr-webapp','fine-tuned/arguana-c-64-24-gpt-4o-2024-05-136897','fine-tuned/arguana-c-64-24-gpt-4o-2024-05-136538','fine-tuned/arguana-c-128-24-gpt-4o-2024-05-13-68212','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-51550','fine-tuned/jina-embeddings-v2-base-en-19052024-oiu8-webapp','fine-tuned/jina-embeddings-v2-base-en-5192024-xqq9-webapp','fine-tuned/jina-embeddings-v2-base-en-5192024-qeye-webapp','fine-tuned/jina-embeddings-v2-base-en-5192024-seuc-webapp','qihoo360/360Zhinao-1.8B-Reranking','fine-tuned/jina-embeddings-v2-base-en-5202024-55bm-webapp','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-693632','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-819563','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-413214','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-129048','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-550302','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-799305','fine-tuned/jina-embeddings-v2-base-en-5202024-6tkj-webapp','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-264015','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-994439','fine-tuned/jina-embeddings-v2-base-en-5202024-rxyq-webapp','jinaai/jina-clip-v1','fine-tuned/jina-embeddings-v2-base-en-21052024-5qm5-webapp','dayyass/universal-sentence-encoder-multilingual-large-3-pytorch','fine-tuned/jina-embeddings-v2-base-en-21052024-5smg-webapp','fine-tuned/jina-embeddings-v2-base-en-22052024-vuno-webapp','fine-tuned/arguana-c-256-24-gpt-4o-2024-05-13-387094','fine-tuned/LegalBenchConsumerContractsQA-256-24-gpt-4o-2024-05-13-292605','fine-tuned/LegalBenchCorporateLobbying-256-24-gpt-4o-2024-05-13-296144','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-454852','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-79875','fine-tuned/TRECCOVID-256-24-gpt-4o-2024-05-13-190413','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-727361','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-410031','fine-tuned/jina-embeddings-v2-base-code-5222024-i8af-webapp','fine-tuned/jina-embeddings-v2-base-en-5222024-hkde-webapp','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-14719','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-526066','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-10630','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-825318','nvidia/NV-Embed-v1','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-203779','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-497939','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-417900','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-994884','fine-tuned/jina-embeddings-v2-base-en-23052024-hbdj-webapp','fine-tuned/jina-embeddings-v2-base-en-23052024-6kfw-webapp','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-214114','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-587313','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-36954','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-814821','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-256742','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-317735','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-378237','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-992459','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-552473','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-816730','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-875153','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-630221','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-214478','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-645586','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-786584','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-785172','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-687872','fine-tuned/BAAI_bge-small-en-v1_5-23052024-upq5-webapp','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-855191','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-978964','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-847943','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-449863','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-610535','fine-tuned/NFCorpus-8-8-gpt-4o-2024-05-13-322852','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-898550','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-546049','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-499715','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-598568','fine-tuned/BAAI_bge-large-en-v1_5-5242024-5uvy-webapp','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-304829','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-138515','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-269096','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-778232','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-111876','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-292803','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-96776','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-67198','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-310581','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-449834','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-737659','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-976783','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-27685','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-54716','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-166315','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-812157','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-133486','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-423936','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-772252','w601sxs/b1ade-embed-kd','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-141246','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-478897','fine-tuned/ArguAna-256-24-gpt-4o-2024-05-13-952023','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-157892','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-780826','fine-tuned/TRECCOVID-256-24-gpt-4o-2024-05-13-475598','fine-tuned/QuoraRetrieval-256-24-gpt-4o-2024-05-13-635320','fine-tuned/Touche2020-256-24-gpt-4o-2024-05-13-27907','fine-tuned/BAAI_bge-small-en-v1_5-5252024-jzfp-webapp','fine-tuned/TRECCOVID-256-24-gpt-4o-2024-05-13-953989','fine-tuned/ArguAna-256-24-gpt-4o-2024-05-13-413991','fine-tuned/QuoraRetrieval-256-24-gpt-4o-2024-05-13-80208','fine-tuned/SciFact-256-24-gpt-4o-2024-05-13-484582','fine-tuned/FiQA2018-256-24-gpt-4o-2024-05-13-919917','fine-tuned/NFCorpus-256-24-gpt-4o-2024-05-13-988957','fine-tuned/SCIDOCS-256-24-gpt-4o-2024-05-13-597314','fine-tuned/TRECCOVID-256-24-gpt-4o-2024-05-13-896673','fine-tuned/ArguAna-256-24-gpt-4o-2024-05-13-689823','fine-tuned/BAAI_bge-small-en-v1_5-5272024-2fs4-webapp','fine-tuned/BAAI_bge-small-en-v1_5-27052024-4e8w-webapp','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-890333','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-140539','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-2499','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-733782','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-221689','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-465198','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-698531','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-548936','fine-tuned/BAAI_bge-small-en-v1_5-5272024-ou25-webapp','agier9/UAE-Large-V1-Q5_K_S-GGUF','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-69882','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-822545','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-268697','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-43315','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-866232','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-580978','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-115380','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-985263','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-439294','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-607244','fine-tuned/TRECCOVID-512-192-gpt-4o-2024-05-13-347397','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-650620','fine-tuned/QuoraRetrieval-512-192-gpt-4o-2024-05-13-777321','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-73934','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-14571','fine-tuned/TRECCOVID-512-192-gpt-4o-2024-05-13-653452','fine-tuned/QuoraRetrieval-512-192-gpt-4o-2024-05-13-768442','fine-tuned/BAAI_bge-small-en-v1_5-5282024-hkt5-webapp','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-100928','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-906438','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-266507','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-93805','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-424608','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-710799','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-357185','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-873132','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-452456','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-143735','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-625238','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-186741','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-935443','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-418918','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-110174','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-859511','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-437825','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-986812','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-37395','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-591725','fine-tuned/BAAI_bge-small-en-v1_5-2852024-6p16-webapp','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-93651135','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-89953157','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-23636059','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-83930416','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-27692546','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-76823162','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-89836585','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-28032241','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-34914559','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-10552781','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-44219785','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-60453771','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-34917964','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-24541174','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-20151707','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-26543668','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-3292683','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-14028623','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-378068','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-27258064','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-79168271','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-80780135','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-42468142','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-47583376','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-80745457','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-34699555','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-35912','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-6089388','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-43473113','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-31581583','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-79659206','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-51211577','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-53785794','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-37851926','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-93507731','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-24464680','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-1134151','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-87401391','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-76679499','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-58211433','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-56351634','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-87403910','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-67485775','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-8421720','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-50444055','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-67948597','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-63275487','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-90390391','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-16241583','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-86331274','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-53403987','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-3465370','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-19100452','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-83904142','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-37125303','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-94762694','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-20768519','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-35609715','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-14003539','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-16083606','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-3973638','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-76839538','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-90164285','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-52015789','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-93248154','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-74504128','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-65608189','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-92012085','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-34898812','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-59792256','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-26737110','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-41821758','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-29425597','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-12907987','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-34642434','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-65268203','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-85722278','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-7975202','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-62563104','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-22039677','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-80948573','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-48400660','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-10086588','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-11626257','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-5953538','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-68485784','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-51991531','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-81928581','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-6825910','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-52686172','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-63983441','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-76979764','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-25305323','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-89774081','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-99342737','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-97839788','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-52238558','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-486134','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-46607440','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-80802988','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-67820659','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-37230491','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-64924747','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-17390035','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-66909812','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-67941497','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-95714065','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-65992666','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-89826544','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-74939490','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-16883408','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-40695234','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-68577224','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-47339454','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-36338558','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-17911388','fine-tuned/FiQA2018-512-192-gpt-4o-2024-05-13-97777963','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-51883844','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-24419258','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-34427772','Linq-AI-Research/Linq-Embed-Mistral','fine-tuned/ArguAna-512-192-gpt-4o-2024-05-13-14562627','fine-tuned/SCIDOCS-512-192-gpt-4o-2024-05-13-37833293','fine-tuned/before-finetuning-512-192-gpt-4o-2024-05-13-65274313','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-99421248','fine-tuned/NFCorpus-512-192-gpt-4o-2024-05-13-67596481','fine-tuned/SciFact-512-192-gpt-4o-2024-05-13-3038586','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-18360524','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-73143156','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-20584918','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-52831585','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-45622553','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-45587246','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-39088299','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-5483216','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-23538198','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-94858978','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-25926506','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-60385830','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-19472313','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-1216656','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-39265981','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-76083984','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-97946708','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-66633416','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-13220755','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-62034393','Classical/Yinka','fine-tuned/BAAI_bge-small-en-v1_5-30052024-rc2l-webapp','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-55034819','twadada/tst','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-2553188','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-28832324','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-50573159','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-38097330','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-66747460','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-48618256','fine-tuned/BAAI_bge-small-en-v1_5-612024-vf79-webapp','fine-tuned/BAAI_bge-small-en-v1_5-632024-34lw-webapp','corto-ai/bge-reranker-large-onnx','fine-tuned/BAAI_bge-small-en-v1_5-04062024-hsmq-webapp','iampanda/zpoint_large_embedding_zh','silverjam/jina-embeddings-v2-base-zh','fine-tuned/jinaai_jina-embeddings-v2-base-en-05062024-16gq-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-05062024-445b-webapp','neofung/LdIR-reranker-large','fine-tuned/jinaai_jina-embeddings-v2-base-en-05062024-zvoa-webapp','fine-tuned/BAAI_bge-small-en-v1_5-05062024-x987-webapp','fine-tuned/deepspeed-from-new-new-docker','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-86786922','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-59074949','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-55567015','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-67199932','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-24297328','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-81211802','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-7385160','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-42885533','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-27359624','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-35162543','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-33133286','fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-83115388','fine-tuned/SciFact-32000-384-gpt-4o-2024-05-13-41822019','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-66131574','fine-tuned/ArguAna-32000-384-gpt-4o-2024-05-13-68388407','fine-tuned/SCIDOCS-32000-384-gpt-4o-2024-05-13-71434542','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-6875032','fine-tuned/before-finetuning-32000-384-gpt-4o-2024-05-13-91940173','fine-tuned/NFCorpus-32000-384-gpt-4o-2024-05-13-70846146','fine-tuned/BAAI_bge-large-en-v1_5-672024-v51y-webapp','Gameselo/STS-multilingual-mpnet-base-v2','itod/UAE-Large-V1-Q8_0-GGUF','fine-tuned/jinaai_jina-embeddings-v2-base-en-08062024-z8ik-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-202469-tgjk-webapp','liddlefish/privacy_embedding_rag_10k_base_checkpoint_2','liddlefish/privacy_embedding_rag_10k_base_final','w601sxs/b1ade-embed-kd_3','fine-tuned/jinaai_jina-embeddings-v2-base-en-6112024-fmxr-webapp','liddlefish/privacy_embedding_rag_10k_base_15_final','liddlefish/privacy_embedding_rag_10k_base_12_final','fine-tuned/BAAI_bge-m3-6122024-ibs3-webapp','fine-tuned/BAAI_bge-m3-2024__6__12_-1217-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-es-6122024-fv1x-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-6122024-bhm2-webapp','fine-tuned/BAAI_bge-large-en-v1_5-1362024-2wos-webapp','raghavlight/TDTE','fine-tuned/jinaai_jina-embeddings-v2-base-en-6132024-wvrg-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-6132024-bez1-webapp','fine-tuned/BAAI_bge-large-en-1362024-gcw6-webapp','fine-tuned/BAAI_bge-base-en-1362024-n19c-webapp','fine-tuned/BAAI_bge-m3-1362024-m82b-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-6142024-huet-webapp','fine-tuned/BAAI_bge-m3-6142024-0ndt-webapp','fine-tuned/BAAI_bge-large-en-v1_5-14062024-fimj-webapp','Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka','CAiRE/UniVaR-lambda-80','CAiRE/UniVaR-lambda-20','CAiRE/UniVaR-lambda-5','CAiRE/UniVaR-lambda-1','fine-tuned/BAAI_bge-large-en-v1_5-14062024-xdwa-webapp','Salesforce/SFR-Embedding-2_R','fine-tuned/BAAI_bge-large-en-15062024-atex-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-2024615-ioyu-webapp','ILKT/2024-06-15_10-09-42','Alibaba-NLP/gte-Qwen2-7B-instruct','fine-tuned/BAAI_bge-large-en-v1_5-1562024-to89-webapp','Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet','fine-tuned/jinaai_jina-embeddings-v2-base-en-6162024-xxse-webapp','Omartificial-Intelligence-Space/Arabic-labse-Matryoshka','Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka','Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka','ILKT/2024-06-17_21-37-12','fine-tuned/BAAI_bge-small-en-v1_5-18062024-56t5-webapp','ILKT/2024-06-19_08-22-22','ILKT/2024-06-19_10-03-38','fine-tuned/jinaai_jina-embeddings-v2-base-en-6192024-56os-webapp','ILKT/2024-06-19_21-12-17','ILKT/2024-06-19_22-27-15','ILKT/2024-06-19_22-23-38','fine-tuned/jinaai_jina-embeddings-v2-base-en-20062024-djhb-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-20062024-t2n9-webapp','ILKT/2024-06-20_12-31-59','fine-tuned/BAAI_bge-large-en-2062024-u43q-webapp','ILKT/2024-06-20_12-31-55','tomaarsen/jina-clip-v1-st','tomaarsen/jina-clip-v1-st-remote','fine-tuned/jinaai_jina-embeddings-v2-base-en-6212024-p8j6-webapp','ILKT/2024-06-22_12-37-29_epoch_1','ILKT/2024-06-22_12-37-29_epoch_2','ILKT/2024-06-22_12-37-29_epoch_3','ILKT/2024-06-22_12-37-29_epoch_4','ILKT/2024-06-22_12-37-29_epoch_5','fine-tuned/jinaai_jina-embeddings-v2-base-es-22062024-taeu-webapp','ILKT/2024-06-22_12-37-29_epoch_6','ILKT/2024-06-22_12-37-29_epoch_7','ILKT/2024-06-22_12-37-29_epoch_8','ILKT/2024-06-22_12-37-29_epoch_9','ILKT/2024-06-22_12-37-29_epoch_10','ILKT/2024-06-22_12-37-29_epoch_11','ILKT/2024-06-22_12-37-29_epoch_12','fine-tuned/jinaai_jina-embeddings-v2-base-en-6232024-zldx-webapp','ILKT/2024-06-22_12-37-29_epoch_13','ILKT/2024-06-22_12-37-29_epoch_14','ILKT/2024-06-23_09-09-07_epoch_1','ILKT/2024-06-22_12-37-29_epoch_15','ILKT/2024-06-23_09-09-07_epoch_2','ILKT/2024-06-23_09-09-07_epoch_3','ILKT/2024-06-23_09-09-07_epoch_4','ILKT/2024-06-23_09-09-07_epoch_5','ILKT/2024-06-23_09-09-07_epoch_6','ILKT/2024-06-23_09-09-07_epoch_7','ILKT/2024-06-23_09-09-07_epoch_8','fine-tuned/BAAI_bge-m3-6232024-4vtf-webapp','ILKT/2024-06-23_09-09-07_epoch_9','ILKT/2024-06-24_00-11-56_epoch_1','ILKT/2024-06-23_09-09-07_epoch_10','ILKT/2024-06-24_00-11-56_epoch_2','ILKT/2024-06-23_09-09-07_epoch_11','ILKT/2024-06-24_00-11-56_epoch_3','ILKT/2024-06-24_00-11-56_epoch_4','ILKT/2024-06-23_09-09-07_epoch_12','ILKT/2024-06-24_00-11-56_epoch_5','ILKT/2024-06-23_09-09-07_epoch_13','ILKT/2024-06-24_00-11-56_epoch_6','ILKT/2024-06-24_00-11-56_epoch_7','Lajavaness/bilingual-embedding-large','fine-tuned/jinaai_jina-embeddings-v2-base-en-24_06_2024-lrip-webapp','ILKT/2024-06-24_22-31-18_epoch_1','ILKT/2024-06-24_22-31-28_epoch_1','ILKT/2024-06-24_22-31-18_epoch_2','ILKT/2024-06-24_22-31-28_epoch_2','ILKT/2024-06-24_22-31-18_epoch_3','ILKT/2024-06-24_22-31-28_epoch_3','ILKT/2024-06-24_22-31-18_epoch_4','ILKT/2024-06-24_22-31-28_epoch_4','ILKT/2024-06-24_22-31-18_epoch_5','ILKT/2024-06-24_22-31-28_epoch_5','ILKT/2024-06-24_22-31-18_epoch_6','ILKT/2024-06-24_22-31-28_epoch_6','ILKT/2024-06-24_22-31-18_epoch_7','ILKT/2024-06-24_22-31-28_epoch_7','ILKT/2024-06-24_22-31-18_epoch_8','ILKT/2024-06-24_22-31-28_epoch_8','ILKT/2024-06-24_22-31-18_epoch_9','ILKT/2024-06-24_22-31-28_epoch_9','ILKT/2024-06-24_22-31-18_epoch_10','ILKT/2024-06-24_22-31-28_epoch_10','ILKT/2024-06-24_22-31-18_epoch_11','ILKT/2024-06-24_22-31-28_epoch_11','ILKT/2024-06-24_22-31-18_epoch_12','ILKT/2024-06-24_22-31-28_epoch_12','ILKT/2024-06-24_22-31-18_epoch_13','ILKT/2024-06-24_22-31-28_epoch_13','ILKT/2024-06-24_22-31-18_epoch_14','ILKT/2024-06-24_22-31-28_epoch_14','ILKT/2024-06-24_22-31-18_epoch_15','ILKT/2024-06-24_22-31-28_epoch_15','ILKT/2024-06-24_22-31-18_epoch_16','ILKT/2024-06-24_22-31-28_epoch_16','ILKT/2024-06-24_22-31-18_epoch_17','ILKT/2024-06-24_22-31-28_epoch_17','ILKT/2024-06-24_22-31-18_epoch_18','ILKT/2024-06-24_22-31-28_epoch_18','ILKT/2024-06-24_22-31-18_epoch_19','ILKT/2024-06-24_22-31-28_epoch_19','ILKT/2024-06-24_22-31-18_epoch_20','ILKT/2024-06-24_22-31-28_epoch_20','ILKT/2024-06-24_22-31-18_epoch_21','ILKT/2024-06-24_22-31-28_epoch_21','ILKT/2024-06-24_22-31-18_epoch_22','ILKT/2024-06-24_22-31-28_epoch_22','ILKT/2024-06-24_22-31-18_epoch_23','ILKT/2024-06-24_22-31-28_epoch_23','ILKT/2024-06-24_22-31-18_epoch_24','ILKT/2024-06-24_22-31-28_epoch_24','ILKT/2024-06-24_22-31-18_epoch_25','ILKT/2024-06-24_22-31-28_epoch_25','ILKT/2024-06-24_22-31-18_epoch_26','ILKT/2024-06-24_22-31-28_epoch_26','ILKT/2024-06-24_22-31-18_epoch_27','ILKT/2024-06-24_22-31-28_epoch_27','ILKT/2024-06-24_22-31-18_epoch_28','ILKT/2024-06-24_22-31-28_epoch_28','ILKT/2024-06-24_22-31-18_epoch_29','ILKT/2024-06-24_22-31-28_epoch_29','ILKT/2024-06-24_22-31-18_epoch_30','Lenovo-Zhihui/Zhihui_LLM_Embedding','ILKT/2024-06-24_22-31-28_epoch_30','ILKT/2024-06-24_22-31-18_epoch_31','ILKT/2024-06-24_22-31-28_epoch_31','ILKT/2024-06-24_22-31-18_epoch_32','ILKT/2024-06-24_22-31-28_epoch_32','ILKT/2024-06-24_22-31-18_epoch_33','ILKT/2024-06-24_22-31-28_epoch_33','ILKT/2024-06-24_22-31-18_epoch_34','ILKT/2024-06-24_22-31-28_epoch_34','ILKT/2024-06-24_22-31-18_epoch_35','ILKT/2024-06-24_22-31-28_epoch_35','ILKT/2024-06-24_22-31-18_epoch_36','ILKT/2024-06-24_22-31-28_epoch_36','ILKT/2024-06-24_22-31-18_epoch_37','ILKT/2024-06-24_22-31-28_epoch_37','ILKT/2024-06-24_22-31-18_epoch_38','ILKT/2024-06-24_22-31-28_epoch_38','ILKT/2024-06-24_22-31-18_epoch_39','ILKT/2024-06-24_22-31-28_epoch_39','ILKT/2024-06-24_22-31-18_epoch_40','ILKT/2024-06-24_22-31-28_epoch_40','ILKT/2024-06-24_22-31-18_epoch_41','ILKT/2024-06-24_22-31-28_epoch_41','ILKT/2024-06-24_22-31-18_epoch_42','ILKT/2024-06-24_22-31-28_epoch_42','ILKT/2024-06-24_22-31-18_epoch_43','ILKT/2024-06-24_22-31-28_epoch_43','ILKT/2024-06-24_22-31-18_epoch_44','ILKT/2024-06-24_22-31-28_epoch_44','ILKT/2024-06-24_22-31-18_epoch_45','ILKT/2024-06-24_22-31-28_epoch_45','ILKT/2024-06-24_22-31-18_epoch_46','ILKT/2024-06-24_22-31-28_epoch_46','ILKT/2024-06-24_22-31-18_epoch_47','ILKT/2024-06-24_22-31-28_epoch_47','ILKT/2024-06-24_22-31-18_epoch_48','ILKT/2024-06-24_22-31-28_epoch_48','ILKT/2024-06-24_22-31-18_epoch_49','ILKT/2024-06-24_22-31-28_epoch_49','ILKT/2024-06-24_22-31-18_epoch_50','ILKT/2024-06-24_22-31-28_epoch_50','ILKT/2024-06-24_22-31-18_epoch_51','ILKT/2024-06-24_22-31-28_epoch_51','ILKT/2024-06-24_22-31-18_epoch_52','ILKT/2024-06-24_22-31-28_epoch_52','ILKT/2024-06-24_22-31-18_epoch_53','ILKT/2024-06-24_22-31-28_epoch_53','ILKT/2024-06-24_22-31-18_epoch_54','ILKT/2024-06-24_22-31-28_epoch_54','ILKT/2024-06-24_22-31-18_epoch_55','ILKT/2024-06-24_22-31-28_epoch_55','ILKT/2024-06-24_22-31-18_epoch_56','ILKT/2024-06-24_22-31-28_epoch_56','ILKT/2024-06-24_22-31-18_epoch_57','ILKT/2024-06-24_22-31-28_epoch_57','ILKT/2024-06-24_22-31-18_epoch_58','ILKT/2024-06-24_22-31-28_epoch_58','ILKT/2024-06-24_22-31-18_epoch_59','ILKT/2024-06-24_22-31-28_epoch_59','ILKT/2024-06-24_22-31-18_epoch_60','ILKT/2024-06-24_22-31-28_epoch_60','ILKT/2024-06-24_22-31-18_epoch_61','ILKT/2024-06-24_22-31-28_epoch_61','ILKT/2024-06-24_22-31-18_epoch_62','ILKT/2024-06-24_22-31-28_epoch_62','ILKT/2024-06-24_22-31-18_epoch_63','ILKT/2024-06-24_22-31-28_epoch_63','ILKT/2024-06-24_22-31-18_epoch_64','ILKT/2024-06-24_22-31-28_epoch_64','ILKT/2024-06-24_22-31-18_epoch_65','ILKT/2024-06-24_22-31-28_epoch_65','ILKT/2024-06-24_22-31-18_epoch_66','ILKT/2024-06-24_22-31-28_epoch_66','ILKT/2024-06-24_22-31-18_epoch_67','Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet','ILKT/2024-06-24_22-31-28_epoch_67','ILKT/2024-06-24_22-31-18_epoch_68','ILKT/2024-06-24_22-31-28_epoch_68','ILKT/2024-06-24_22-31-18_epoch_69','ILKT/2024-06-24_22-31-28_epoch_69','ILKT/2024-06-24_22-31-18_epoch_70','ILKT/2024-06-24_22-31-28_epoch_70','ILKT/2024-06-24_22-31-18_epoch_71','ILKT/2024-06-24_22-31-28_epoch_71','ILKT/2024-06-24_22-31-18_epoch_72','ILKT/2024-06-24_22-31-28_epoch_72','ILKT/2024-06-24_22-31-18_epoch_73','ILKT/2024-06-24_22-31-28_epoch_73','ILKT/2024-06-24_22-31-18_epoch_74','ILKT/2024-06-24_22-31-28_epoch_74','ILKT/2024-06-24_22-31-18_epoch_75','Intel/neural-embedding-v1','ILKT/2024-06-24_22-31-28_epoch_75','fine-tuned/BAAI_bge-m3-26062024-gdon-webapp','Lajavaness/bilingual-embedding-base','fine-tuned/jinaai_jina-embeddings-v2-base-es-6262024-yjwm-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-6262024-wtkc-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-6272024-qn9b-webapp','BeastyZ/e5-R-mistral-7b','ILKT/2024-06-23_09-09-07_epoch_14','ILKT/2024-06-23_09-09-07_epoch_15','ILKT/2024-06-23_09-09-07_epoch_16','ILKT/2024-06-23_09-09-07_epoch_17','ILKT/2024-06-23_09-09-07_epoch_18','ILKT/2024-06-23_09-09-07_epoch_19','ILKT/2024-06-23_09-09-07_epoch_20','ILKT/2024-06-23_09-09-07_epoch_21','ILKT/2024-06-23_09-09-07_epoch_22','ILKT/2024-06-23_09-09-07_epoch_23','ILKT/2024-06-23_09-09-07_epoch_24','ILKT/2024-06-23_09-09-07_epoch_25','ILKT/2024-06-23_09-09-07_epoch_26','ILKT/2024-06-23_09-09-07_epoch_27','ILKT/2024-06-23_09-09-07_epoch_28','ILKT/2024-06-23_09-09-07_epoch_29','ILKT/2024-06-23_09-09-07_epoch_30','ILKT/2024-06-23_09-09-07_epoch_31','ILKT/2024-06-23_09-09-07_epoch_32','ILKT/2024-06-23_09-09-07_epoch_33','ILKT/2024-06-23_09-09-07_epoch_34','ILKT/2024-06-23_09-09-07_epoch_35','ILKT/2024-06-23_09-09-07_epoch_36','ILKT/2024-06-23_09-09-07_epoch_37','ILKT/2024-06-23_09-09-07_epoch_38','ILKT/2024-06-23_09-09-07_epoch_39','ILKT/2024-06-23_09-09-07_epoch_40','ILKT/2024-06-23_09-09-07_epoch_41','ILKT/2024-06-23_09-09-07_epoch_42','ILKT/2024-06-23_09-09-07_epoch_43','ILKT/2024-06-23_09-09-07_epoch_44','ILKT/2024-06-23_09-09-07_epoch_45','ILKT/2024-06-23_09-09-07_epoch_46','ILKT/2024-06-23_09-09-07_epoch_47','ILKT/2024-06-23_09-09-07_epoch_48','ILKT/2024-06-23_09-09-07_epoch_49','ILKT/2024-06-23_09-09-07_epoch_50','ILKT/2024-06-23_09-09-07_epoch_51','ILKT/2024-06-23_09-09-07_epoch_52','ILKT/2024-06-23_09-09-07_epoch_53','ILKT/2024-06-23_09-09-07_epoch_54','ILKT/2024-06-23_09-09-07_epoch_55','ILKT/2024-06-23_09-09-07_epoch_56','ILKT/2024-06-23_09-09-07_epoch_57','ILKT/2024-06-23_09-09-07_epoch_58','ILKT/2024-06-23_09-09-07_epoch_59','ILKT/2024-06-23_09-09-07_epoch_60','ILKT/2024-06-23_09-09-07_epoch_61','ILKT/2024-06-23_09-09-07_epoch_62','ILKT/2024-06-23_09-09-07_epoch_63','ILKT/2024-06-23_09-09-07_epoch_64','ILKT/2024-06-23_09-09-07_epoch_65','ILKT/2024-06-23_09-09-07_epoch_66','ILKT/2024-06-23_09-09-07_epoch_67','ILKT/2024-06-23_09-09-07_epoch_68','ILKT/2024-06-23_09-09-07_epoch_69','ILKT/2024-06-23_09-09-07_epoch_70','ILKT/2024-06-23_09-09-07_epoch_71','ILKT/2024-06-23_09-09-07_epoch_72','ILKT/2024-06-23_09-09-07_epoch_73','ILKT/2024-06-23_09-09-07_epoch_74','ILKT/2024-06-23_09-09-07_epoch_75','Pekarnick/e5-large-v2-Q4_K_M-GGUF','ILKT/2024-06-24_00-11-56_epoch_8','ILKT/2024-06-24_00-11-56_epoch_9','ILKT/2024-06-24_00-11-56_epoch_10','ILKT/2024-06-24_00-11-56_epoch_11','ILKT/2024-06-24_00-11-56_epoch_12','ILKT/2024-06-24_00-11-56_epoch_13','ILKT/2024-06-24_00-11-56_epoch_14','ILKT/2024-06-24_00-11-56_epoch_15','ILKT/2024-06-24_00-11-56_epoch_16','ILKT/2024-06-24_00-11-56_epoch_17','ILKT/2024-06-24_00-11-56_epoch_18','ILKT/2024-06-24_00-11-56_epoch_19','ILKT/2024-06-24_00-11-56_epoch_20','ILKT/2024-06-24_00-11-56_epoch_21','ILKT/2024-06-24_00-11-56_epoch_22','ILKT/2024-06-24_00-11-56_epoch_23','ILKT/2024-06-24_00-11-56_epoch_24','ILKT/2024-06-24_00-11-56_epoch_25','ILKT/2024-06-24_00-11-56_epoch_26','ILKT/2024-06-24_00-11-56_epoch_27','ILKT/2024-06-24_00-11-56_epoch_28','ILKT/2024-06-24_00-11-56_epoch_29','ILKT/2024-06-24_00-11-56_epoch_30','ILKT/2024-06-24_00-11-56_epoch_31','ILKT/2024-06-24_00-11-56_epoch_32','ILKT/2024-06-24_00-11-56_epoch_33','ILKT/2024-06-24_00-11-56_epoch_34','ILKT/2024-06-24_00-11-56_epoch_35','ILKT/2024-06-24_00-11-56_epoch_36','ILKT/2024-06-24_00-11-56_epoch_37','ILKT/2024-06-24_00-11-56_epoch_38','ILKT/2024-06-24_00-11-56_epoch_39','ILKT/2024-06-24_00-11-56_epoch_40','ILKT/2024-06-24_00-11-56_epoch_41','ILKT/2024-06-24_00-11-56_epoch_42','ILKT/2024-06-24_00-11-56_epoch_43','ILKT/2024-06-24_00-11-56_epoch_44','ILKT/2024-06-24_00-11-56_epoch_45','ILKT/2024-06-24_00-11-56_epoch_46','ILKT/2024-06-24_00-11-56_epoch_47','ILKT/2024-06-24_00-11-56_epoch_48','ILKT/2024-06-24_00-11-56_epoch_49','ILKT/2024-06-24_00-11-56_epoch_50','ILKT/2024-06-24_00-11-56_epoch_51','ILKT/2024-06-24_00-11-56_epoch_52','ILKT/2024-06-24_00-11-56_epoch_53','ILKT/2024-06-24_00-11-56_epoch_54','ILKT/2024-06-24_00-11-56_epoch_55','ILKT/2024-06-24_00-11-56_epoch_56','ILKT/2024-06-24_00-11-56_epoch_57','ILKT/2024-06-24_00-11-56_epoch_58','ILKT/2024-06-24_00-11-56_epoch_59','ILKT/2024-06-24_00-11-56_epoch_60','ILKT/2024-06-24_00-11-56_epoch_61','ILKT/2024-06-24_00-11-56_epoch_62','ILKT/2024-06-24_00-11-56_epoch_63','ILKT/2024-06-24_00-11-56_epoch_64','ILKT/2024-06-24_00-11-56_epoch_65','ILKT/2024-06-24_00-11-56_epoch_66','ILKT/2024-06-24_00-11-56_epoch_67','ILKT/2024-06-24_00-11-56_epoch_68','ILKT/2024-06-24_00-11-56_epoch_69','ILKT/2024-06-24_00-11-56_epoch_70','ILKT/2024-06-24_00-11-56_epoch_71','ILKT/2024-06-24_00-11-56_epoch_72','ILKT/2024-06-24_00-11-56_epoch_73','ILKT/2024-06-24_00-11-56_epoch_74','ILKT/2024-06-24_00-11-56_epoch_75','ILKT/2024-06-22_12-37-29_epoch_16','ILKT/2024-06-22_12-37-29_epoch_17','ILKT/2024-06-22_12-37-29_epoch_18','ILKT/2024-06-22_12-37-29_epoch_19','ILKT/2024-06-22_12-37-29_epoch_20','ILKT/2024-06-22_12-37-29_epoch_21','ILKT/2024-06-22_12-37-29_epoch_22','ILKT/2024-06-22_12-37-29_epoch_23','ILKT/2024-06-22_12-37-29_epoch_24','ILKT/2024-06-22_12-37-29_epoch_25','ILKT/2024-06-22_12-37-29_epoch_26','ILKT/2024-06-22_12-37-29_epoch_27','ILKT/2024-06-22_12-37-29_epoch_28','ILKT/2024-06-22_12-37-29_epoch_29','ILKT/2024-06-22_12-37-29_epoch_30','ILKT/2024-06-22_12-37-29_epoch_31','ILKT/2024-06-22_12-37-29_epoch_32','ILKT/2024-06-22_12-37-29_epoch_33','ILKT/2024-06-22_12-37-29_epoch_34','ILKT/2024-06-22_12-37-29_epoch_35','ILKT/2024-06-22_12-37-29_epoch_36','ILKT/2024-06-22_12-37-29_epoch_37','ILKT/2024-06-22_12-37-29_epoch_38','ILKT/2024-06-22_12-37-29_epoch_39','ILKT/2024-06-22_12-37-29_epoch_40','ILKT/2024-06-22_12-37-29_epoch_41','ILKT/2024-06-22_12-37-29_epoch_42','ILKT/2024-06-22_12-37-29_epoch_43','ILKT/2024-06-22_12-37-29_epoch_44','ILKT/2024-06-22_12-37-29_epoch_45','ILKT/2024-06-22_12-37-29_epoch_46','ILKT/2024-06-22_12-37-29_epoch_47','ILKT/2024-06-22_12-37-29_epoch_48','ILKT/2024-06-22_12-37-29_epoch_49','ILKT/2024-06-22_12-37-29_epoch_50','ILKT/2024-06-22_12-37-29_epoch_51','ILKT/2024-06-22_12-37-29_epoch_52','ILKT/2024-06-22_12-37-29_epoch_53','ILKT/2024-06-22_12-37-29_epoch_54','ILKT/2024-06-22_12-37-29_epoch_55','ILKT/2024-06-22_12-37-29_epoch_56','ILKT/2024-06-22_12-37-29_epoch_57','ILKT/2024-06-22_12-37-29_epoch_58','ILKT/2024-06-22_12-37-29_epoch_59','ILKT/2024-06-22_12-37-29_epoch_60','ILKT/2024-06-22_12-37-29_epoch_61','ILKT/2024-06-22_12-37-29_epoch_62','ILKT/2024-06-22_12-37-29_epoch_63','ILKT/2024-06-22_12-37-29_epoch_64','ILKT/2024-06-22_12-37-29_epoch_65','ILKT/2024-06-22_12-37-29_epoch_66','ILKT/2024-06-22_12-37-29_epoch_67','ILKT/2024-06-22_12-37-29_epoch_68','ILKT/2024-06-22_12-37-29_epoch_69','ILKT/2024-06-22_12-37-29_epoch_70','ILKT/2024-06-22_12-37-29_epoch_71','ILKT/2024-06-22_12-37-29_epoch_72','ILKT/2024-06-22_12-37-29_epoch_73','ILKT/2024-06-22_12-37-29_epoch_74','ILKT/2024-06-22_12-37-29_epoch_75','Lajavaness/bilingual-embedding-large-8k','Alibaba-NLP/gte-Qwen2-1.5B-instruct','Jaume/gemma-2b-embeddings','lier007/xiaobu-embedding-v2','chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF','fine-tuned/jinaai_jina-embeddings-v2-base-es-472024-aqk1-webapp','second-state/gte-Qwen2-1.5B-instruct-GGUF','gaianet/gte-Qwen2-1.5B-instruct-GGUF','yco/bilingual-embedding-base','fine-tuned/jinaai_jina-embeddings-v2-base-en-05072024-aj6g-webapp','AbderrahmanSkiredj1/arabic_text_embedding_sts_arabertv02_arabicnlitriplet','AbderrahmanSkiredj1/Arabic_text_embedding_for_sts','dimcha/mxbai-embed-large-v1-Q4_K_M-GGUF','fine-tuned/BAAI_bge-m3-782024-wl54-webapp','nvidia/NV-Retriever-v1','fine-tuned/jinaai_jina-embeddings-v2-base-en-792024-tyen-webapp','fine-tuned/jinaai_jina-embeddings-v2-base-en-11072024-bh6v-webapp','archit28/bge-large-en-v1.5-Q4_K_S-GGUF','dunzhang/stella_en_1.5B_v5','dunzhang/stella_en_400M_v5','niancheng/gte-Qwen2-1.5B-instruct-Q4_K_M-GGUF','niancheng/gte-Qwen2-7B-instruct-Q4_K_M-GGUF','fine-tuned/jinaai_jina-embeddings-v2-base-en-15072024-5xy1-webapp','fine-tuned/BAAI_bge-small-en-v1_5-7152024-w1z0-webapp', 'Cohere/Cohere-embed-english-v3.0','Cohere/Cohere-embed-english-v3.0','Cohere/Cohere-embed-multilingual-light-v3.0','Cohere/Cohere-embed-multilingual-v3.0','vesteinn/DanskBERT','jhu-clsp/FollowIR-7B','GritLM/GritLM-7B','GritLM/GritLM-7B','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse','sentence-transformers/LaBSE','Linq-AI-Research/Linq-Embed-Mistral','nvidia/NV-Embed-v1','nvidia/NV-Retriever-v1','Salesforce/SFR-Embedding-Mistral','sentence-transformers/all-MiniLM-L12-v2','sentence-transformers/all-MiniLM-L12-v2','sentence-transformers/all-MiniLM-L6-v2','sentence-transformers/all-MiniLM-L6-v2','sentence-transformers/all-mpnet-base-v2','sentence-transformers/all-mpnet-base-v2','sentence-transformers/allenai-specter','Geotrend/bert-base-10lang-cased','Geotrend/bert-base-15lang-cased','Geotrend/bert-base-25lang-cased','google-bert/bert-base-multilingual-cased','google-bert/bert-base-multilingual-uncased','KB/bert-base-swedish-cased','bert-base-uncased','BAAI/bge-base-en-v1.5','BAAI/bge-base-en-v1.5','BAAI/bge-base-zh-v1.5','BAAI/bge-large-en-v1.5','BAAI/bge-large-en-v1.5','BAAI/bge-large-zh-noinstruct','BAAI/bge-large-zh-v1.5','BAAI/bge-m3','BAAI/bge-m3','BAAI/bge-small-en-v1.5','BAAI/bge-small-en-v1.5','BAAI/bge-small-zh-v1.5','almanach/camembert-base','almanach/camembert-large','nthakur/contriever-base-msmarco','facebook/contriever','facebook/contriever','T-Systems-onsite/cross-en-de-roberta-sentence-transformer','chcaa/dfm-encoder-large-v1','chcaa/dfm-encoder-large-v1','Geotrend/distilbert-base-25lang-cased','Geotrend/distilbert-base-en-fr-cased','Geotrend/distilbert-base-en-fr-es-pt-it-cased','Geotrend/distilbert-base-fr-cased','distilbert-base-uncased','sentence-transformers/distiluse-base-multilingual-cased-v2','dwzhu/e5-base-4k','intfloat/e5-base-v2','intfloat/e5-base','intfloat/e5-large-v2','intfloat/e5-large','intfloat/e5-mistral-7b-instruct','intfloat/e5-mistral-7b-instruct-noinstruct','intfloat/e5-small','jonfd/electra-small-nordic','KBLab/electra-small-swedish-cased-discriminator','google/flan-t5-base','google/flan-t5-large','flaubert/flaubert_base_cased','flaubert/flaubert_base_uncased','flaubert/flaubert_large_cased','deepset/gbert-base','deepset/gbert-large','deepset/gelectra-base','deepset/gelectra-large','sentence-transformers/average_word_embeddings_glove.6B.300d','uklfr/gottbert-base','Alibaba-NLP/gte-Qwen1.5-7B-instruct','Alibaba-NLP/gte-Qwen2-7B-instruct','sentence-transformers/gtr-t5-base','sentence-transformers/gtr-t5-large','sentence-transformers/gtr-t5-xl','sentence-transformers/gtr-t5-xxl','ipipan/herbert-base-retrieval-v2','hkunlp/instructor-base','hkunlp/instructor-large','hkunlp/instructor-xl','jinaai/jina-embeddings-v2-base-en','sentence-transformers/average_word_embeddings_komninos','meta-llama/Llama-2-7b-chat-hf','silk-road/luotuo-bert-medium','moka-ai/m3e-base','moka-ai/m3e-large','mistralai/Mistral-7B-Instruct-v0.2','castorini/monobert-large-msmarco','castorini/monot5-3b-msmarco-10k','castorini/monot5-base-msmarco-10k','sentence-transformers/msmarco-bert-co-condensor','sentence-transformers/multi-qa-MiniLM-L6-cos-v1','intfloat/multilingual-e5-base','intfloat/multilingual-e5-large','intfloat/multilingual-e5-small','NbAiLab/nb-bert-base','NbAiLab/nb-bert-large','nomic-ai/nomic-embed-text-v1','nomic-ai/nomic-embed-text-v1.5','nomic-ai/nomic-embed-text-v1.5','nomic-ai/nomic-embed-text-v1.5','nomic-ai/nomic-embed-text-v1.5','ltg/norbert3-base','ltg/norbert3-large','sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2','sentence-transformers/paraphrase-multilingual-mpnet-base-v2','KBLab/sentence-bert-swedish-cased','dangvantuan/sentence-camembert-base','dangvantuan/sentence-camembert-large','Wissam42/sentence-croissant-llm-base','sentence-transformers/sentence-t5-base','sentence-transformers/sentence-t5-large','sentence-transformers/sentence-t5-xl','sentence-transformers/sentence-t5-xxl','ipipan/silver-retriever-base-v1','sdadas/st-polish-paraphrase-from-distilroberta','sdadas/st-polish-paraphrase-from-mpnet','princeton-nlp/sup-simcse-bert-base-uncased','orionweller/tart-dual-contriever-msmarco','facebook/tart-full-flan-t5-xl','shibing624/text2vec-base-chinese','GanymedeNil/text2vec-large-chinese','izhx/udever-bloom-1b1','izhx/udever-bloom-560m','vprelovac/universal-sentence-encoder-multilingual-3','vprelovac/universal-sentence-encoder-multilingual-large-3','princeton-nlp/unsup-simcse-bert-base-uncased','sentence-transformers/use-cmlm-multilingual','xlm-roberta-base','xlm-roberta-large']
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- mteb
2
- gradio_rangeslider>=0.0.8
3
- gradio>=5.5.0
4
- plotly>=5.20.0,<6.0.0
 
1
+ gradio
2
+ datasets
3
+ pandas
4
+ huggingface_hub