Spaces:
Sleeping
Sleeping
File size: 6,797 Bytes
0a1e238 3936853 4722147 31b5a19 c48611a 614088e db74214 eab471f 0a1e238 74a942d 31b5a19 afff22e 31b5a19 546504d 0a1e238 57455f3 31b5a19 6f96de4 546504d 31b5a19 546504d 31b5a19 546504d 31b5a19 a12fa3b 36011ef 31b5a19 a12fa3b f57ce49 13beabf 4722147 d58ad0b 4722147 13beabf 4722147 879b028 4722147 13beabf 4722147 4e33061 4722147 4e33061 4722147 13beabf 4722147 13beabf 4722147 4d1a87e 4722147 857a9de 4722147 13beabf 4722147 4e33061 4722147 4e33061 4722147 4e33061 4722147 4e33061 4722147 86b5a28 4722147 86b5a28 4722147 857a9de 4722147 13beabf 4722147 13beabf 4722147 13beabf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import os
import pkg_resources
# Using this wacky hack to get around the massively ridicolous managed env loading order
def is_installed(package_name, version):
try:
pkg = pkg_resources.get_distribution(package_name)
return pkg.version == version
except pkg_resources.DistributionNotFound:
return False
# shifted from below - this must be the first streamlit call; otherwise: problems
st.set_page_config(page_title = 'Vulnerability Analysis',
initial_sidebar_state='expanded', layout="wide")
@st.cache_resource # cache the function so it's not called every time app.py is triggered
def install_packages():
install_commands = []
if not is_installed("spaces", "0.12.0"):
install_commands.append("pip install spaces==0.17.0")
if not is_installed("pydantic", "1.8.2"):
install_commands.append("pip install pydantic==1.8.2")
if not is_installed("typer", "0.4.0"):
install_commands.append("pip install typer==0.4.0")
if install_commands:
os.system(" && ".join(install_commands))
# install packages if necessary
install_packages()
import appStore.vulnerability_analysis as vulnerability_analysis
import appStore.target as target_analysis
import appStore.doc_processing as processing
from utils.uploadAndExample import add_upload
from utils.vulnerability_classifier import label_dict
import pandas as pd
import plotly.express as px
#st.set_page_config(page_title = 'Vulnerability Analysis',
# initial_sidebar_state='expanded', layout="wide")
with st.sidebar:
# upload and example doc
choice = st.sidebar.radio(label = 'Select the Document',
help = 'You can upload the document \
or else you can try a example document',
options = ('Upload Document', 'Try Example'),
horizontal = True)
add_upload(choice)
with st.container():
st.markdown("<h2 style='text-align: center; color: black;'> Vulnerability Analysis 2.0 </h2>", unsafe_allow_html=True)
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The Vulnerability Analysis App is an open-source\
digital tool which aims to assist policy analysts and \
other users in extracting and filtering references \
to different groups in vulnerable situations from public documents. \
We use Natural Language Processing (NLP), specifically deep \
learning-based text representations to search context-sensitively \
for mentions of the special needs of groups in vulnerable situations
to cluster them thematically.
""")
st.write("""
What Happens in background?
- Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
In this step the document is broken into smaller paragraphs \
(based on word/sentence count).
- Step 2: The paragraphs are then fed to the **Vulnerability Classifier** which detects if
the paragraph contains any or multiple references to vulnerable groups.
""")
st.write("")
# Define the apps used
apps = [processing.app, vulnerability_analysis.app, target_analysis.app]
multiplier_val =1/len(apps)
if st.button("Analyze Document"):
prg = st.progress(0.0)
for i,func in enumerate(apps):
func()
prg.progress((i+1)*multiplier_val)
# If there is data stored
if 'key0' in st.session_state:
vulnerability_analysis.vulnerability_display()
#target_analysis.target_display()
# ###################################################################
# #with st.sidebar:
# # topic = st.radio(
# # "Which category you want to explore?",
# # (['Vulnerability', 'Concrete targets/actions/measures']))
# #if topic == 'Vulnerability':
# # Assign dataframe a name
# df_vul = st.session_state['key0']
# st.write(df_vul)
# col1, col2 = st.columns([1,1])
# with col1:
# # Header
# st.subheader("Explore references to vulnerable groups:")
# # Text
# num_paragraphs = len(df_vul['Vulnerability Label'])
# num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum()
# st.markdown(f"""<div style="text-align: justify;"> The document contains a
# total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
# We identified <span style="color: red;">{num_references}</span>
# references to vulnerable groups.</div>
# <br>
# In the pie chart on the right you can see the distribution of the different
# groups defined. For a more detailed view in the text, see the paragraphs and
# their respective labels in the table below.</div>""", unsafe_allow_html=True)
# with col2:
# ### Bar chart
# # # Create a df that stores all the labels
# df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
# # Count how often each label appears in the "Vulnerability Labels" column
# group_counts = {}
# # Iterate through each sublist
# for index, row in df_vul.iterrows():
# # Iterate through each group in the sublist
# for sublist in row['Vulnerability Label']:
# # Update the count in the dictionary
# group_counts[sublist] = group_counts.get(sublist, 0) + 1
# # Create a new dataframe from group_counts
# df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count'])
# # Merge the label counts with the df_label DataFrame
# df_label_count = df_labels.merge(df_label_count, on='Label', how='left')
# st.write("df_label_count")
# # # Configure graph
# # fig = px.pie(df_labels,
# # names="Label",
# # values="Count",
# # title='Label Counts',
# # hover_name="Count",
# # color_discrete_sequence=px.colors.qualitative.Plotly
# # )
# # #Show plot
# # st.plotly_chart(fig, use_container_width=True)
# # ### Table
# st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
# vulnerability_analysis.vulnerability_display()
# elif topic == 'Action':
# policyaction.action_display()
# else:
# policyaction.policy_display()
#st.write(st.session_state.key0) |