File size: 27,747 Bytes
6b5dfe6 bfdbdf6 182990e b3d3b2f 666a605 ded3b8b efd358c b7f76d9 0e68d2d 25db69d 0e68d2d 25db69d 6b5dfe6 13e5571 6b5dfe6 f1d9efe 6b5dfe6 bfdbdf6 0e68d2d 6028c08 0e68d2d efd358c bfdbdf6 843cf9f bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 ac586a8 666a605 ac586a8 666a605 ac586a8 35edaea c24dac7 e2138ad 666a605 0e68d2d 666a605 0e68d2d 666a605 c9de947 0fd53b3 bfdbdf6 666a605 b3d3b2f e2138ad b3d3b2f ded3b8b 22d5d2c bfdbdf6 9255bd7 bfdbdf6 d1c3953 3164600 0fd53b3 3164600 bfdbdf6 9465fd2 bfdbdf6 666a605 d1c3953 666a605 0e68d2d 0fd53b3 666a605 0e68d2d 126bc9f 0e68d2d efd358c 0e68d2d 0fd53b3 3164600 0fd53b3 c9de947 0e68d2d c9de947 0e68d2d c9de947 0fd53b3 666a605 010c9e3 666a605 efd358c 666a605 c08bad3 b7f76d9 666a605 0e68d2d 666a605 0e68d2d 666a605 0e68d2d 666a605 214d6ac 24452d6 666a605 0e68d2d 666a605 0fd53b3 3928b10 0fd53b3 666a605 d1c3953 ac586a8 cb024a4 efd358c cab8b2c 0fd53b3 cab8b2c 0fd53b3 cab8b2c 0fd53b3 2cd9a44 cab8b2c 9b78871 0fd53b3 9b78871 0fd53b3 3164600 0fd53b3 6b5dfe6 c4b99ca 0fd53b3 c4b99ca f1d9efe c4b99ca ac586a8 0fd53b3 ac586a8 0fd53b3 cab8b2c ac586a8 6b5dfe6 9644b52 0fd53b3 bfdbdf6 0fd53b3 6b5dfe6 adcfd5e bfdbdf6 c4b99ca bfdbdf6 6b5dfe6 0e68d2d bfdbdf6 0e68d2d bfdbdf6 4a499a4 bfdbdf6 4a499a4 bfdbdf6 49a200f bfdbdf6 0e68d2d 666a605 bfdbdf6 b3d3b2f 0fd53b3 6c25e6b 0fd53b3 3164600 0fd53b3 58ad9c8 0e68d2d bfdbdf6 0e68d2d 24f1d8c 0fd53b3 0e68d2d 9255bd7 666a605 0e68d2d 0fd53b3 3164600 0e68d2d ac586a8 666a605 ac586a8 0fd53b3 c8f1310 0fd53b3 3164600 0fd53b3 cab8b2c 0fd53b3 3164600 0fd53b3 0eddda3 0fd53b3 0eddda3 0fd53b3 0eddda3 b764093 c8f1310 0fd53b3 148af15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import gradio as gr
import os
from pathlib import Path
import argparse
import shutil
from train_dreambooth import run_training
from convertosd import convert
from PIL import Image
from slugify import slugify
import requests
import torch
import zipfile
import urllib.parse
import gc
from diffusers import StableDiffusionPipeline
from huggingface_hub import snapshot_download
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
maximum_concepts = 3
#Pre download the files even if we don't use it here
model_to_load = snapshot_download(repo_id="multimodalart/sd-fine-tunable")
safety_checker = snapshot_download(repo_id="multimodalart/sd-sc")
def zipdir(path, ziph):
# ziph is zipfile handle
for root, dirs, files in os.walk(path):
for file in files:
ziph.write(os.path.join(root, file),
os.path.relpath(os.path.join(root, file),
os.path.join(path, '..')))
def swap_text(option):
mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
if(option == "object"):
instance_prompt_example = "cttoy"
freeze_for = 50
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
elif(option == "person"):
instance_prompt_example = "julcto"
freeze_for = 100
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
elif(option == "style"):
instance_prompt_example = "trsldamrl"
freeze_for = 10
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''<img src="file/trsl_style.png" />''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
def count_files(*inputs):
file_counter = 0
concept_counter = 0
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
files = inputs[i]
if(files):
concept_counter+=1
file_counter+=len(files)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
if(uses_custom):
Training_Steps = int(inputs[-3])
else:
if(type_of_thing == "person"):
Training_Steps = file_counter*200*2
else:
Training_Steps = file_counter*200
return([gr.update(visible=True), gr.update(visible=True, value=f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>''')])
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def train(*inputs):
torch.cuda.empty_cache()
if 'pipe' in globals():
del pipe
gc.collect()
if "IS_SHARED_UI" in os.environ:
raise gr.Error("This Space only works in duplicated instances")
if os.path.exists("output_model"): shutil.rmtree('output_model')
if os.path.exists("instance_images"): shutil.rmtree('instance_images')
if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip")
if os.path.exists("model.ckpt"): os.remove("model.ckpt")
if os.path.exists("hastrained.success"): os.remove("hastrained.success")
file_counter = 0
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
if(input):
os.makedirs('instance_images',exist_ok=True)
files = inputs[i+(maximum_concepts*2)]
prompt = inputs[i+maximum_concepts]
if(prompt == "" or prompt == None):
raise gr.Error("You forgot to define your concept prompt")
for j, file_temp in enumerate(files):
file = Image.open(file_temp.name)
image = pad_image(file)
image = image.resize((512, 512))
extension = file_temp.name.split(".")[1]
image = image.convert('RGB')
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100)
file_counter += 1
os.makedirs('output_model',exist_ok=True)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
remove_attribution_after = inputs[-6]
if(uses_custom):
Training_Steps = int(inputs[-3])
Train_text_encoder_for = int(inputs[-2])
else:
Training_Steps = file_counter*200
if(type_of_thing == "object"):
Train_text_encoder_for=30
elif(type_of_thing == "person"):
Train_text_encoder_for=60
elif(type_of_thing == "style"):
Train_text_encoder_for=15
class_data_dir = None
stptxt = int((Training_Steps*Train_text_encoder_for)/100)
args_general = argparse.Namespace(
image_captions_filename = True,
train_text_encoder = True,
stop_text_encoder_training = stptxt,
save_n_steps = 0,
pretrained_model_name_or_path = model_to_load,
instance_data_dir="instance_images",
class_data_dir=class_data_dir,
output_dir="output_model",
instance_prompt="",
seed=42,
resolution=512,
mixed_precision="fp16",
train_batch_size=1,
gradient_accumulation_steps=1,
use_8bit_adam=True,
learning_rate=2e-6,
lr_scheduler="polynomial",
lr_warmup_steps = 0,
max_train_steps=Training_Steps,
)
print("Starting training...")
lock_file = open("intraining.lock", "w")
lock_file.close()
run_training(args_general)
gc.collect()
torch.cuda.empty_cache()
print("Adding Safety Checker to the model...")
shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor")
shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker")
shutil.copy(f"model_index.json", "output_model/model_index.json")
print("Zipping model file...")
with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
zipdir('output_model/', zipf)
print("Training completed!")
if os.path.exists("intraining.lock"): os.remove("intraining.lock")
trained_file = open("hastrained.success", "w")
trained_file.close()
if(remove_attribution_after):
hf_token = inputs[-5]
model_name = inputs[-7]
where_to_upload = inputs[-8]
push(model_name, where_to_upload, hf_token, True)
hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'flavor': 'cpu-basic'}
requests.post(hardware_url, json = body, headers=headers)
return [
gr.update(visible=True, value=["diffusers_model.zip"]), #result
gr.update(visible=True), #try_your_model
gr.update(visible=True), #push_to_hub
gr.update(visible=True), #convert_button
gr.update(visible=False), #training_ongoing
gr.update(visible=True) #completed_training
]
def generate(prompt):
torch.cuda.empty_cache()
from diffusers import StableDiffusionPipeline
global pipe
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(prompt).images[0]
return(image)
def push(model_name, where_to_upload, hf_token, comes_from_automated=False):
if(not os.path.exists("model.ckpt")):
convert("output_model", "model.ckpt")
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
from huggingface_hub import create_repo
model_name_slug = slugify(model_name)
api = HfApi()
your_username = api.whoami(token=hf_token)["name"]
if(where_to_upload == "My personal profile"):
model_id = f"{your_username}/{model_name_slug}"
else:
model_id = f"sd-dreambooth-library/{model_name_slug}"
headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"}
response = requests.post("https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", headers=headers)
images_upload = os.listdir("instance_images")
image_string = ""
instance_prompt_list = []
previous_instance_prompt = ''
for i, image in enumerate(images_upload):
instance_prompt = image.split("_")[0]
if(instance_prompt != previous_instance_prompt):
title_instance_prompt_string = instance_prompt
instance_prompt_list.append(instance_prompt)
else:
title_instance_prompt_string = ''
previous_instance_prompt = instance_prompt
image_string = f'''{title_instance_prompt_string} {"(use that on your prompt)" if title_instance_prompt_string != "" else ""}
{image_string}![{instance_prompt} {i}](https://huggingface.co/{model_id}/resolve/main/concept_images/{urllib.parse.quote(image)})'''
readme_text = f'''---
license: creativeml-openrail-m
tags:
- text-to-image
---
### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training)
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
{image_string}
'''
#Save the readme to a file
readme_file = open("model.README.md", "w")
readme_file.write(readme_text)
readme_file.close()
#Save the token identifier to a file
text_file = open("token_identifier.txt", "w")
text_file.write(', '.join(instance_prompt_list))
text_file.close()
try:
create_repo(model_id,private=True, token=hf_token)
except:
import time
epoch_time = str(int(time.time()))
create_repo(f"{model_id}-{epoch_time}", private=True,token=hf_token)
operations = [
CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"),
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="model.README.md"),
CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt")
]
api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=f"Upload the model {model_name}",
token=hf_token
)
api.upload_folder(
folder_path="output_model",
repo_id=model_id,
token=hf_token
)
api.upload_folder(
folder_path="instance_images",
path_in_repo="concept_images",
repo_id=model_id,
token=hf_token
)
if(not comes_from_automated):
extra_message = "Don't forget to remove the GPU attribution after you play with it."
else:
extra_message = "The GPU has been removed automatically as requested, and you can try the model via the model page"
api.create_discussion(repo_id=os.environ['SPACE_ID'], title=f"Your model {model_name} has finished trained from the Dreambooth Train Spaces!", description=f"Your model has been successfully uploaded to: https://huggingface.co/{model_id}. {extra_message}",repo_type="space", token=hf_token)
return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])]
def convert_to_ckpt():
convert("output_model", "model.ckpt")
return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])
def check_status(top_description):
if os.path.exists("hastrained.success"):
update_top_tag = gr.update(value=f'''
<div class="gr-prose" style="max-width: 80%">
<h2>Your model has finished training ✅</h2>
<p>Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub). Once you are done, your model is safe, and you don't want to train a new one, go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}">settings page</a> and downgrade your Space to a CPU Basic</p>
</div>
''')
show_outputs = True
elif os.path.exists("intraining.lock"):
update_top_tag = gr.update(value='''
<div class="gr-prose" style="max-width: 80%">
<h2>Don't worry, your model is still training! ⌛</h2>
<p>You closed the tab while your model was training, but it's all good! It is still training right now. You can click the "Open logs" button above here to check the training status. Once training is done, reload this tab to interact with your model</p>
</div>
''')
show_outputs = False
else:
update_top_tag = gr.update(value=top_description)
show_outputs = False
if os.path.exists("diffusers_model.zip"):
update_files_tag = gr.update(visible=show_outputs, value=["diffusers_model.zip"])
else:
update_files_tag = gr.update(visible=show_outputs)
return [
update_top_tag, #top_description
gr.update(visible=show_outputs), #try_your_model
gr.update(visible=show_outputs), #push_to_hub
update_files_tag, #result
gr.update(visible=show_outputs), #convert_button
]
def checkbox_swap(checkbox):
return [gr.update(visible=checkbox), gr.update(visible=checkbox), gr.update(visible=checkbox), gr.update(visible=checkbox)]
with gr.Blocks(css=css) as demo:
with gr.Box():
if "IS_SHARED_UI" in os.environ:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>Attention - This Space doesn't work in this shared UI</h2>
<p>For it to work, you have to duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train a model with less than 100 images using default settings! <a class="duplicate-button" style="display:inline-block" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
<img class="instruction" src="file/duplicate.png">
<img class="arrow" src="file/arrow.png" />
</div>
''')
else:
top_description = gr.HTML(f'''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully duplicated the Dreambooth Training Space 🎉</h2>
<p>If you haven't already, <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">attribute a T4 GPU to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
gr.Markdown("# Dreambooth training")
gr.Markdown("Customize Stable Diffusion by training it on a few examples of concepts, up to 3 concepts on the same model. This Space is based on TheLastBen's [fast-DreamBooth Colab](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) with [🧨 diffusers](https://github.com/huggingface/diffusers)")
with gr.Row() as what_are_you_training:
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True)
#Very hacky approach to emulate dynamically created Gradio components
with gr.Row() as upload_your_concept:
with gr.Column():
thing_description = gr.Markdown("You are going to train an `object`, please upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use, example:")
thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''')
things_naming = gr.Markdown("You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `cttoy` here). Images will be automatically cropped to 512x512.")
with gr.Column():
file_collection = []
concept_collection = []
buttons_collection = []
delete_collection = []
is_visible = []
row = [None] * maximum_concepts
for x in range(maximum_concepts):
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
if(x == 0):
visible = True
is_visible.append(gr.State(value=True))
else:
visible = False
is_visible.append(gr.State(value=False))
file_collection.append(gr.File(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', file_count="multiple", interactive=True, visible=visible))
with gr.Column(visible=visible) as row[x]:
concept_collection.append(gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt - use a unique, made up word to avoid collisions'''))
with gr.Row():
if(x < maximum_concepts-1):
buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible))
if(x > 0):
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
counter_add = 1
for button in buttons_collection:
if(counter_add < len(buttons_collection)):
button.click(lambda:
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
None,
[row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]], queue=False)
else:
button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
counter_add += 1
counter_delete = 1
for delete_button in delete_collection:
if(counter_delete < len(delete_collection)+1):
delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
counter_delete += 1
with gr.Accordion("Custom Settings", open=False):
swap_auto_calculated = gr.Checkbox(label="Use custom settings")
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.")
steps = gr.Number(label="How many steps", value=800)
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
with gr.Box(visible=False) as training_summary:
training_summary_text = gr.HTML("", visible=False, label="Training Summary")
training_summary_checkbox = gr.Checkbox(label="Automatically remove paid GPU attribution and upload model to the Hugging Face Hub after training", value=False)
training_summary_model_name = gr.Textbox(label="Name of your model", visible=False)
training_summary_where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to", visible=False)
training_summary_token_message = gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.", visible=False)
training_summary_token = gr.Textbox(label="Hugging Face Write Token", type="password", visible=False)
train_btn = gr.Button("Start Training")
training_ongoing = gr.Markdown("## Training is ongoing ⌛... You can close this tab if you like or just wait. If you did not check the `Remove GPU After training`, you can come back here to try your model and upload it after training. Don't forget to remove the GPU attribution after you are done. ", visible=False)
#Post-training UI
completed_training = gr.Markdown('''# ✅ Training completed.
### Don't forget to remove the GPU attribution after you are done trying and uploading your model''', visible=False)
with gr.Row():
with gr.Box(visible=False) as try_your_model:
gr.Markdown("## Try your model")
prompt = gr.Textbox(label="Type your prompt")
result_image = gr.Image()
generate_button = gr.Button("Generate Image")
with gr.Box(visible=False) as push_to_hub:
gr.Markdown("## Push to Hugging Face Hub")
model_name = gr.Textbox(label="Name of your model", placeholder="Tarsila do Amaral Style")
where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to")
gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.")
hf_token = gr.Textbox(label="Hugging Face Write Token", type="password")
push_button = gr.Button("Push to the Hub")
result = gr.File(label="Download the uploaded models in the diffusers format", visible=True)
success_message_upload = gr.Markdown(visible=False)
convert_button = gr.Button("Convert to CKPT", visible=False)
#Swap the examples and the % of text encoder trained depending if it is an object, person or style
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder], queue=False, show_progress=False)
#Update the summary box below the UI according to how many images are uploaded and whether users are using custom settings or not
for file in file_collection:
file.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
steps.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
perc_txt_encoder.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
#Give more options if the user wants to finish everything after training
training_summary_checkbox.change(fn=checkbox_swap, inputs=training_summary_checkbox, outputs=[training_summary_token_message, training_summary_token, training_summary_model_name, training_summary_where_to_upload],queue=False, show_progress=False)
#Add a message for while it is in training
train_btn.click(lambda:gr.update(visible=True), inputs=None, outputs=training_ongoing)
#The main train function
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[training_summary_where_to_upload]+[training_summary_model_name]+[training_summary_checkbox]+[training_summary_token]+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result, try_your_model, push_to_hub, convert_button, training_ongoing, completed_training], queue=False)
#Button to generate an image from your trained model after training
generate_button.click(fn=generate, inputs=prompt, outputs=result_image, queue=False)
#Button to push the model to the Hugging Face Hub
push_button.click(fn=push, inputs=[model_name, where_to_upload, hf_token], outputs=[success_message_upload, result], queue=False)
#Button to convert the model to ckpt format
convert_button.click(fn=convert_to_ckpt, inputs=[], outputs=result, queue=False)
#Checks if the training is running
demo.load(fn=check_status, inputs=top_description, outputs=[top_description, try_your_model, push_to_hub, result, convert_button], queue=False, show_progress=False)
demo.queue(default_enabled=False).launch(debug=True) |