File size: 27,747 Bytes
6b5dfe6
bfdbdf6
 
 
 
 
182990e
b3d3b2f
666a605
 
ded3b8b
efd358c
b7f76d9
0e68d2d
25db69d
0e68d2d
25db69d
6b5dfe6
 
13e5571
6b5dfe6
f1d9efe
6b5dfe6
bfdbdf6
0e68d2d
6028c08
0e68d2d
 
efd358c
 
 
 
 
 
 
 
 
bfdbdf6
843cf9f
bfdbdf6
 
 
c4b99ca
bfdbdf6
 
 
c4b99ca
bfdbdf6
c4b99ca
bfdbdf6
c4b99ca
bfdbdf6
ac586a8
 
666a605
ac586a8
 
666a605
 
 
 
ac586a8
 
 
 
 
 
 
 
 
35edaea
 
 
c24dac7
e2138ad
 
 
 
 
 
 
 
 
 
 
 
 
666a605
0e68d2d
 
 
 
 
666a605
 
0e68d2d
666a605
 
c9de947
 
0fd53b3
bfdbdf6
 
 
 
 
 
 
666a605
 
b3d3b2f
 
e2138ad
b3d3b2f
 
ded3b8b
22d5d2c
bfdbdf6
 
9255bd7
bfdbdf6
d1c3953
3164600
0fd53b3
3164600
bfdbdf6
 
 
9465fd2
bfdbdf6
666a605
 
 
 
 
 
 
 
 
 
d1c3953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666a605
0e68d2d
0fd53b3
 
666a605
0e68d2d
126bc9f
0e68d2d
 
 
 
 
efd358c
 
0e68d2d
0fd53b3
 
 
 
3164600
 
 
 
0fd53b3
 
 
 
 
 
 
 
 
 
 
 
c9de947
 
0e68d2d
c9de947
0e68d2d
c9de947
 
 
 
 
0fd53b3
666a605
 
 
 
 
010c9e3
 
 
666a605
 
 
 
efd358c
666a605
 
 
 
 
 
 
 
 
 
 
 
 
c08bad3
b7f76d9
666a605
 
 
 
 
 
 
0e68d2d
666a605
0e68d2d
666a605
 
 
0e68d2d
666a605
 
 
 
 
 
214d6ac
 
 
24452d6
 
 
666a605
 
0e68d2d
666a605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd53b3
 
 
 
3928b10
0fd53b3
666a605
d1c3953
ac586a8
cb024a4
 
efd358c
cab8b2c
0fd53b3
cab8b2c
0fd53b3
 
 
 
 
 
 
cab8b2c
0fd53b3
 
 
 
 
 
2cd9a44
cab8b2c
 
9b78871
 
 
 
0fd53b3
 
 
 
9b78871
0fd53b3
 
 
 
3164600
0fd53b3
6b5dfe6
 
c4b99ca
0fd53b3
c4b99ca
 
f1d9efe
c4b99ca
 
 
 
ac586a8
0fd53b3
ac586a8
0fd53b3
cab8b2c
ac586a8
 
6b5dfe6
9644b52
0fd53b3
 
bfdbdf6
0fd53b3
 
 
6b5dfe6
adcfd5e
bfdbdf6
c4b99ca
bfdbdf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5dfe6
0e68d2d
bfdbdf6
0e68d2d
bfdbdf6
 
 
 
 
 
 
 
 
 
 
 
4a499a4
bfdbdf6
4a499a4
bfdbdf6
 
 
 
 
49a200f
bfdbdf6
0e68d2d
666a605
 
 
bfdbdf6
 
b3d3b2f
0fd53b3
6c25e6b
 
0fd53b3
3164600
0fd53b3
58ad9c8
0e68d2d
bfdbdf6
0e68d2d
24f1d8c
0fd53b3
 
 
 
0e68d2d
 
 
 
9255bd7
666a605
0e68d2d
 
 
 
 
 
 
0fd53b3
3164600
0e68d2d
 
ac586a8
666a605
ac586a8
0fd53b3
 
c8f1310
0fd53b3
 
 
 
 
 
 
 
3164600
0fd53b3
cab8b2c
0fd53b3
 
3164600
0fd53b3
 
0eddda3
0fd53b3
0eddda3
0fd53b3
0eddda3
b764093
 
c8f1310
0fd53b3
148af15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import gradio as gr
import os
from pathlib import Path
import argparse
import shutil
from train_dreambooth import run_training
from convertosd import convert
from PIL import Image
from slugify import slugify
import requests
import torch
import zipfile
import urllib.parse
import gc
from diffusers import StableDiffusionPipeline
from huggingface_hub import snapshot_download

css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
'''
maximum_concepts = 3

#Pre download the files even if we don't use it here
model_to_load = snapshot_download(repo_id="multimodalart/sd-fine-tunable")
safety_checker = snapshot_download(repo_id="multimodalart/sd-sc")

def zipdir(path, ziph):
    # ziph is zipfile handle
    for root, dirs, files in os.walk(path):
        for file in files:
            ziph.write(os.path.join(root, file), 
                       os.path.relpath(os.path.join(root, file), 
                                       os.path.join(path, '..')))

def swap_text(option):
    mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
    if(option == "object"):
        instance_prompt_example = "cttoy"
        freeze_for = 50
        return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
    elif(option == "person"):
       instance_prompt_example = "julcto"
       freeze_for = 100
       return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
    elif(option == "style"):
        instance_prompt_example = "trsldamrl"
        freeze_for = 10
        return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like  {mandatory_liability}:", '''<img src="file/trsl_style.png" />''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]

def count_files(*inputs):
    file_counter = 0
    concept_counter = 0
    for i, input in enumerate(inputs):
        if(i < maximum_concepts-1):
            files = inputs[i]
            if(files):
                concept_counter+=1
                file_counter+=len(files)
    uses_custom = inputs[-1] 
    type_of_thing = inputs[-4]
    if(uses_custom):
        Training_Steps = int(inputs[-3])
    else:
        if(type_of_thing == "person"):
            Training_Steps = file_counter*200*2
        else:
            Training_Steps = file_counter*200
    return([gr.update(visible=True), gr.update(visible=True, value=f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
    The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
    If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>''')])

def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image

def train(*inputs):
    torch.cuda.empty_cache()
    if 'pipe' in globals():
        del pipe
        gc.collect()

    if "IS_SHARED_UI" in os.environ:
        raise gr.Error("This Space only works in duplicated instances")
    
    if os.path.exists("output_model"): shutil.rmtree('output_model')
    if os.path.exists("instance_images"): shutil.rmtree('instance_images')
    if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip")
    if os.path.exists("model.ckpt"): os.remove("model.ckpt")
    if os.path.exists("hastrained.success"): os.remove("hastrained.success")
    file_counter = 0
    for i, input in enumerate(inputs):
        if(i < maximum_concepts-1):
            if(input):
                os.makedirs('instance_images',exist_ok=True)
                files = inputs[i+(maximum_concepts*2)]
                prompt = inputs[i+maximum_concepts]
                if(prompt == "" or prompt == None):
                    raise gr.Error("You forgot to define your concept prompt")
                for j, file_temp in enumerate(files):
                    file = Image.open(file_temp.name)
                    image = pad_image(file)
                    image = image.resize((512, 512))
                    extension = file_temp.name.split(".")[1]
                    image = image.convert('RGB')
                    image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100)
                    file_counter += 1
    
    os.makedirs('output_model',exist_ok=True)
    uses_custom = inputs[-1] 
    type_of_thing = inputs[-4]
    
    remove_attribution_after = inputs[-6]
   
    if(uses_custom):
        Training_Steps = int(inputs[-3])
        Train_text_encoder_for = int(inputs[-2])
    else:
        Training_Steps = file_counter*200
        if(type_of_thing == "object"):
            Train_text_encoder_for=30
        elif(type_of_thing == "person"):
            Train_text_encoder_for=60
        elif(type_of_thing == "style"):
            Train_text_encoder_for=15
    
    class_data_dir = None
    stptxt = int((Training_Steps*Train_text_encoder_for)/100)
    args_general = argparse.Namespace(
                image_captions_filename = True,
                train_text_encoder = True,
                stop_text_encoder_training = stptxt,
                save_n_steps = 0,
                pretrained_model_name_or_path = model_to_load,
                instance_data_dir="instance_images",
                class_data_dir=class_data_dir,
                output_dir="output_model",
                instance_prompt="",
                seed=42,
                resolution=512,
                mixed_precision="fp16",
                train_batch_size=1,
                gradient_accumulation_steps=1,
                use_8bit_adam=True,
                learning_rate=2e-6,
                lr_scheduler="polynomial",
                lr_warmup_steps = 0,
                max_train_steps=Training_Steps,     
    )
    print("Starting training...")
    lock_file = open("intraining.lock", "w")
    lock_file.close()
    run_training(args_general)
    gc.collect()
    torch.cuda.empty_cache()
    print("Adding Safety Checker to the model...")
    shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor")
    shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker")
    shutil.copy(f"model_index.json", "output_model/model_index.json")
    print("Zipping model file...")
    with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
        zipdir('output_model/', zipf)
    print("Training completed!")
    if os.path.exists("intraining.lock"): os.remove("intraining.lock")
    trained_file = open("hastrained.success", "w")
    trained_file.close()
    if(remove_attribution_after):
        hf_token = inputs[-5]
        model_name = inputs[-7]
        where_to_upload = inputs[-8]
        push(model_name, where_to_upload, hf_token, True)
        hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
        headers = { "authorization" : f"Bearer {hf_token}"}
        body = {'flavor': 'cpu-basic'}
        requests.post(hardware_url, json = body, headers=headers)
    return [
        gr.update(visible=True, value=["diffusers_model.zip"]), #result
        gr.update(visible=True), #try_your_model
        gr.update(visible=True), #push_to_hub
        gr.update(visible=True), #convert_button
        gr.update(visible=False), #training_ongoing
        gr.update(visible=True) #completed_training
    ]

def generate(prompt):
    torch.cuda.empty_cache()
    from diffusers import StableDiffusionPipeline
    global pipe
    pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    image = pipe(prompt).images[0]  
    return(image)
    
def push(model_name, where_to_upload, hf_token, comes_from_automated=False):
    if(not os.path.exists("model.ckpt")):
        convert("output_model", "model.ckpt")
    from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
    from huggingface_hub import create_repo
    model_name_slug = slugify(model_name)
    api = HfApi()
    your_username = api.whoami(token=hf_token)["name"]
    if(where_to_upload == "My personal profile"):    
        model_id = f"{your_username}/{model_name_slug}"
    else:
        model_id = f"sd-dreambooth-library/{model_name_slug}"
        headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"}
        response = requests.post("https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", headers=headers)
    
    images_upload = os.listdir("instance_images")
    image_string = ""
    instance_prompt_list = []
    previous_instance_prompt = ''
    for i, image in enumerate(images_upload):
        instance_prompt = image.split("_")[0]
        if(instance_prompt != previous_instance_prompt):
            title_instance_prompt_string = instance_prompt
            instance_prompt_list.append(instance_prompt)
        else:
            title_instance_prompt_string = ''
        previous_instance_prompt = instance_prompt
        image_string = f'''{title_instance_prompt_string} {"(use that on your prompt)" if title_instance_prompt_string != "" else ""} 
{image_string}![{instance_prompt} {i}](https://huggingface.co/{model_id}/resolve/main/concept_images/{urllib.parse.quote(image)})'''
    readme_text = f'''---
license: creativeml-openrail-m
tags:
- text-to-image
---
### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training)

You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! 

Sample pictures of:
{image_string}
'''
    #Save the readme to a file
    readme_file = open("model.README.md", "w")
    readme_file.write(readme_text)
    readme_file.close()
    #Save the token identifier to a file
    text_file = open("token_identifier.txt", "w")
    text_file.write(', '.join(instance_prompt_list))
    text_file.close()
    try:
        create_repo(model_id,private=True, token=hf_token)
    except:
        import time
        epoch_time = str(int(time.time()))
        create_repo(f"{model_id}-{epoch_time}", private=True,token=hf_token)
    operations = [
        CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"),
        CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="model.README.md"),
        CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt")
    ]
    api.create_commit(
    repo_id=model_id,
    operations=operations,
    commit_message=f"Upload the model {model_name}",
    token=hf_token
    )
    api.upload_folder(
    folder_path="output_model",
    repo_id=model_id,
    token=hf_token
    )
    api.upload_folder(
    folder_path="instance_images",
    path_in_repo="concept_images",
    repo_id=model_id,
    token=hf_token
    )
    if(not comes_from_automated):
        extra_message = "Don't forget to remove the GPU attribution after you play with it."
    else:
        extra_message = "The GPU has been removed automatically as requested, and you can try the model via the model page"
    api.create_discussion(repo_id=os.environ['SPACE_ID'], title=f"Your model {model_name} has finished trained from the Dreambooth Train Spaces!", description=f"Your model has been successfully uploaded to: https://huggingface.co/{model_id}. {extra_message}",repo_type="space", token=hf_token)

    return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])]

def convert_to_ckpt():
    convert("output_model", "model.ckpt")
    return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])

def check_status(top_description):
    if os.path.exists("hastrained.success"):
        update_top_tag = gr.update(value=f'''
        <div class="gr-prose" style="max-width: 80%">
            <h2>Your model has finished training ✅</h2>
            <p>Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub). Once you are done, your model is safe, and you don't want to train a new one, go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}">settings page</a> and downgrade your Space to a CPU Basic</p> 
        </div>
        ''')
        show_outputs = True
    elif os.path.exists("intraining.lock"):
        update_top_tag = gr.update(value='''
        <div class="gr-prose" style="max-width: 80%">
            <h2>Don't worry, your model is still training! ⌛</h2>
            <p>You closed the tab while your model was training, but it's all good! It is still training right now. You can click the "Open logs" button above here to check the training status. Once training is done, reload this tab to interact with your model</p> 
        </div>
        ''')
        show_outputs = False
    else:
        update_top_tag = gr.update(value=top_description)
        show_outputs = False
    if os.path.exists("diffusers_model.zip"):
       update_files_tag = gr.update(visible=show_outputs, value=["diffusers_model.zip"])
    else:
       update_files_tag = gr.update(visible=show_outputs)
    return [
        update_top_tag, #top_description
        gr.update(visible=show_outputs), #try_your_model
        gr.update(visible=show_outputs), #push_to_hub
        update_files_tag, #result
        gr.update(visible=show_outputs), #convert_button
    ]

def checkbox_swap(checkbox):
    return [gr.update(visible=checkbox), gr.update(visible=checkbox), gr.update(visible=checkbox), gr.update(visible=checkbox)]

with gr.Blocks(css=css) as demo:
    with gr.Box():
        if "IS_SHARED_UI" in os.environ:
            top_description = gr.HTML(f'''
                <div class="gr-prose" style="max-width: 80%">
                <h2>Attention - This Space doesn't work in this shared UI</h2>
                <p>For it to work, you have to duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train a model with less than 100 images using default settings!&nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
                <img class="instruction" src="file/duplicate.png"> 
                <img class="arrow" src="file/arrow.png" />
                </div>
            ''')
        else:
            top_description = gr.HTML(f'''
                <div class="gr-prose" style="max-width: 80%">
                <h2>You have successfully duplicated the Dreambooth Training Space 🎉</h2>
                <p>If you haven't already, <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">attribute a T4 GPU to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p> 
                </div>
            ''')    
    gr.Markdown("# Dreambooth training")
    gr.Markdown("Customize Stable Diffusion by training it on a few examples of concepts, up to 3 concepts on the same model. This Space is based on TheLastBen's [fast-DreamBooth Colab](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) with [🧨 diffusers](https://github.com/huggingface/diffusers)")
    
    with gr.Row() as what_are_you_training:
        type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True)

    #Very hacky approach to emulate dynamically created Gradio components   
    with gr.Row() as upload_your_concept:
        with gr.Column():
            thing_description = gr.Markdown("You are going to train an `object`, please upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use, example:")
            thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''')
            things_naming = gr.Markdown("You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `cttoy` here). Images will be automatically cropped to 512x512.")
        with gr.Column():
            file_collection = []
            concept_collection = []
            buttons_collection = []
            delete_collection = []
            is_visible = []

            row = [None] * maximum_concepts
            for x in range(maximum_concepts):
                ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
                if(x == 0):
                    visible = True
                    is_visible.append(gr.State(value=True))
                else:
                    visible = False
                    is_visible.append(gr.State(value=False))

                file_collection.append(gr.File(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', file_count="multiple", interactive=True, visible=visible))
                with gr.Column(visible=visible) as row[x]:
                    concept_collection.append(gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt - use a unique, made up word to avoid collisions'''))  
                    with gr.Row():
                        if(x < maximum_concepts-1):
                            buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible))
                        if(x > 0):
                            delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
            
            counter_add = 1
            for button in buttons_collection:
                if(counter_add < len(buttons_collection)):
                    button.click(lambda:
                    [gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
                    None, 
                    [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]], queue=False)
                else:
                    button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
                counter_add += 1
            
            counter_delete = 1
            for delete_button in delete_collection:
                if(counter_delete < len(delete_collection)+1):
                    delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
                counter_delete += 1
                  
    with gr.Accordion("Custom Settings", open=False):
        swap_auto_calculated = gr.Checkbox(label="Use custom settings")
        gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.")
        steps = gr.Number(label="How many steps", value=800)
        perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)

    with gr.Box(visible=False) as training_summary:
        training_summary_text = gr.HTML("", visible=False, label="Training Summary")
        training_summary_checkbox = gr.Checkbox(label="Automatically remove paid GPU attribution and upload model to the Hugging Face Hub after training", value=False)
        training_summary_model_name = gr.Textbox(label="Name of your model", visible=False)
        training_summary_where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to", visible=False)
        training_summary_token_message = gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.", visible=False)            
        training_summary_token = gr.Textbox(label="Hugging Face Write Token", type="password", visible=False)
    
    train_btn = gr.Button("Start Training")
    
    training_ongoing = gr.Markdown("## Training is ongoing ⌛... You can close this tab if you like or just wait. If you did not check the `Remove GPU After training`, you can come back here to try your model and upload it after training. Don't forget to remove the GPU attribution after you are done. ", visible=False)
    
    #Post-training UI
    completed_training = gr.Markdown('''# ✅ Training completed. 
    ### Don't forget to remove the GPU attribution after you are done trying and uploading your model''', visible=False)
    
    with gr.Row():
        with gr.Box(visible=False) as try_your_model:
            gr.Markdown("## Try your model")
            prompt = gr.Textbox(label="Type your prompt")
            result_image = gr.Image()
            generate_button = gr.Button("Generate Image")
        
        with gr.Box(visible=False) as push_to_hub:
            gr.Markdown("## Push to Hugging Face Hub")
            model_name = gr.Textbox(label="Name of your model", placeholder="Tarsila do Amaral Style")
            where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to")
            gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.")
            hf_token = gr.Textbox(label="Hugging Face Write Token", type="password")
            
            push_button = gr.Button("Push to the Hub")
    
    result = gr.File(label="Download the uploaded models in the diffusers format", visible=True)
    success_message_upload = gr.Markdown(visible=False)
    convert_button = gr.Button("Convert to CKPT", visible=False)
    
    #Swap the examples and the % of text encoder trained depending if it is an object, person or style
    type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder], queue=False, show_progress=False)
    
    #Update the summary box below the UI according to how many images are uploaded and whether users are using custom settings or not 
    for file in file_collection:
        file.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
    steps.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
    perc_txt_encoder.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary, training_summary_text], queue=False)
    
    #Give more options if the user wants to finish everything after training
    training_summary_checkbox.change(fn=checkbox_swap, inputs=training_summary_checkbox, outputs=[training_summary_token_message, training_summary_token, training_summary_model_name, training_summary_where_to_upload],queue=False, show_progress=False)
    #Add a message for while it is in training
    train_btn.click(lambda:gr.update(visible=True), inputs=None, outputs=training_ongoing)
    
    #The main train function
    train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[training_summary_where_to_upload]+[training_summary_model_name]+[training_summary_checkbox]+[training_summary_token]+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result, try_your_model, push_to_hub, convert_button, training_ongoing, completed_training], queue=False)
    
    #Button to generate an image from your trained model after training
    generate_button.click(fn=generate, inputs=prompt, outputs=result_image, queue=False)
    #Button to push the model to the Hugging Face Hub
    push_button.click(fn=push, inputs=[model_name, where_to_upload, hf_token], outputs=[success_message_upload, result], queue=False)
    #Button to convert the model to ckpt format 
    convert_button.click(fn=convert_to_ckpt, inputs=[], outputs=result, queue=False)
    
    #Checks if the training is running
    demo.load(fn=check_status, inputs=top_description, outputs=[top_description, try_your_model, push_to_hub, result, convert_button], queue=False, show_progress=False)

demo.queue(default_enabled=False).launch(debug=True)