Spaces:
Sleeping
Sleeping
# boids_streamlit_advanced.py | |
import streamlit as st | |
import numpy as np | |
import plotly.graph_objects as go | |
import time | |
# Define the Boid class | |
class Boid: | |
def __init__(self, position, velocity): | |
self.position = np.array(position, dtype='float64') | |
self.velocity = np.array(velocity, dtype='float64') | |
self.acceleration = np.zeros(2, dtype='float64') | |
self.history = [] | |
def update(self, boids, width, height, params): | |
self.flock(boids, params) | |
self.velocity += self.acceleration | |
speed = np.linalg.norm(self.velocity) | |
if speed > params['max_speed']: | |
self.velocity = (self.velocity / speed) * params['max_speed'] | |
self.position += self.velocity | |
self.acceleration = np.zeros(2, dtype='float64') | |
# Screen wrapping | |
self.position[0] = self.position[0] % width | |
self.position[1] = self.position[1] % height | |
# Add current position to history | |
if params['draw_trail']: | |
self.history.append(self.position.copy()) | |
if len(self.history) > params['max_history']: | |
self.history.pop(0) | |
def flock(self, boids, params): | |
self.acceleration = np.zeros(2, dtype='float64') | |
self.fly_towards_center(boids, params) | |
self.avoid_others(boids, params) | |
self.match_velocity(boids, params) | |
self.limit_speed(params) | |
self.avoid_boundaries(width=params['width'], height=params['height'], params=params) | |
def fly_towards_center(self, boids, params): | |
centering_factor = params['centering_factor'] | |
center_x = 0.0 | |
center_y = 0.0 | |
num_neighbors = 0 | |
for other in boids: | |
if other is not self and self.distance(other) < params['visual_range']: | |
center_x += other.position[0] | |
center_y += other.position[1] | |
num_neighbors += 1 | |
if num_neighbors > 0: | |
center_x /= num_neighbors | |
center_y /= num_neighbors | |
direction = np.array([center_x, center_y]) - self.position | |
self.acceleration += centering_factor * direction | |
def avoid_others(self, boids, params): | |
min_distance = params['min_distance'] | |
avoid_factor = params['avoid_factor'] | |
move = np.zeros(2, dtype='float64') | |
for other in boids: | |
if other is not self and self.distance(other) < min_distance: | |
move += self.position - other.position | |
if np.linalg.norm(move) > 0: | |
move = move / np.linalg.norm(move) * avoid_factor | |
self.acceleration += move | |
def match_velocity(self, boids, params): | |
matching_factor = params['matching_factor'] | |
avg_velocity = np.zeros(2, dtype='float64') | |
num_neighbors = 0 | |
for other in boids: | |
if other is not self and self.distance(other) < params['visual_range']: | |
avg_velocity += other.velocity | |
num_neighbors += 1 | |
if num_neighbors > 0: | |
avg_velocity /= num_neighbors | |
self.acceleration += matching_factor * (avg_velocity - self.velocity) | |
def limit_speed(self, params): | |
speed = np.linalg.norm(self.velocity) | |
if speed > params['max_speed']: | |
self.velocity = (self.velocity / speed) * params['max_speed'] | |
def avoid_boundaries(self, width, height, params): | |
margin = params['boundary_margin'] | |
turn_factor = params['boundary_turn_factor'] | |
if self.position[0] < margin: | |
self.acceleration[0] += turn_factor | |
elif self.position[0] > width - margin: | |
self.acceleration[0] -= turn_factor | |
if self.position[1] < margin: | |
self.acceleration[1] += turn_factor | |
elif self.position[1] > height - margin: | |
self.acceleration[1] -= turn_factor | |
def distance(self, other): | |
return np.linalg.norm(self.position - other.position) | |
# Simulation parameters | |
params = { | |
'num_boids': 100, | |
'visual_range': 75.0, | |
'min_distance': 20.0, | |
'centering_factor': 0.005, | |
'avoid_factor': 0.05, | |
'matching_factor': 0.05, | |
'max_speed': 15.0, | |
'draw_trail': False, | |
'max_history': 50, | |
'width': 800, | |
'height': 600, | |
'boundary_margin': 100.0, | |
'boundary_turn_factor': 0.05 | |
} | |
# Streamlit sidebar for parameter adjustments | |
st.sidebar.title("Boids Simulation Parameters") | |
params['num_boids'] = st.sidebar.slider("Number of Boids", 10, 300, 100) | |
params['visual_range'] = st.sidebar.slider("Visual Range", 10.0, 200.0, 75.0) | |
params['min_distance'] = st.sidebar.slider("Minimum Separation Distance", 5.0, 100.0, 20.0) | |
params['centering_factor'] = st.sidebar.slider("Centering Factor", 0.001, 0.02, 0.005) | |
params['avoid_factor'] = st.sidebar.slider("Avoidance Factor", 0.01, 0.1, 0.05) | |
params['matching_factor'] = st.sidebar.slider("Matching Factor", 0.01, 0.1, 0.05) | |
params['max_speed'] = st.sidebar.slider("Maximum Speed", 5.0, 30.0, 15.0) | |
params['draw_trail'] = st.sidebar.checkbox("Draw Trails") | |
if params['draw_trail']: | |
params['max_history'] = st.sidebar.slider("Trail Length", 10, 100, 50) | |
params['boundary_margin'] = st.sidebar.slider("Boundary Margin", 50.0, 300.0, 100.0) | |
params['boundary_turn_factor'] = st.sidebar.slider("Boundary Turn Factor", 0.01, 0.2, 0.05) | |
# Simulation screen size | |
width, height = 800, 600 | |
params['width'] = width | |
params['height'] = height | |
# Initialize Boids | |
boids = [] | |
for _ in range(params['num_boids']): | |
position = [np.random.uniform(0, width), np.random.uniform(0, height)] | |
angle = np.random.uniform(0, 2 * np.pi) | |
velocity = [np.cos(angle), np.sin(angle)] | |
boids.append(Boid(position, velocity)) | |
# Plotly graph setup | |
fig = go.Figure( | |
layout=go.Layout( | |
xaxis=dict(range=[0, width], autorange=False, showgrid=False, zeroline=False), | |
yaxis=dict(range=[0, height], autorange=False, showgrid=False, zeroline=False), | |
width=width, | |
height=height, | |
margin=dict(l=0, r=0, t=0, b=0) | |
) | |
) | |
# Plot initial positions of Boids | |
scatter = go.Scatter( | |
x=[boid.position[0] for boid in boids], | |
y=[boid.position[1] for boid in boids], | |
mode='markers', | |
marker=dict(size=8, color='blue') | |
) | |
fig.add_trace(scatter) | |
# Trail trace | |
if params['draw_trail']: | |
trail_scatter = go.Scatter( | |
x=[], | |
y=[], | |
mode='lines', | |
line=dict(color='rgba(0,0,255,0.2)', width=1), | |
showlegend=False | |
) | |
fig.add_trace(trail_scatter) | |
# Simplified Title | |
st.title("Boids Simulation") | |
# Animation display area | |
animation_placeholder = st.empty() | |
# Explanation Section Title | |
st.header("Mathematical Background of the Boids Algorithm") | |
# Explanation Section | |
st.markdown("### **Overview of the Boids Algorithm**") | |
st.markdown(""" | |
The Boids algorithm, proposed by Craig Reynolds in 1986, is a method for simulating flocking behavior in groups of agents called Boids. Each agent follows simple rules to recreate complex group dynamics. The three fundamental rules are: | |
1. **Separation**: Maintain a suitable distance from nearby Boids to avoid collisions. | |
2. **Alignment**: Align velocity with the average velocity of neighboring Boids. | |
3. **Cohesion**: Move towards the average position of neighboring Boids. | |
""") | |
st.markdown("### **Mathematical Model**") | |
st.markdown(""" | |
The movement of each Boid is represented by its position vector \(\mathbf{p}_i(t)\) and velocity vector \(\mathbf{v}_i(t)\). The position and velocity of Boid \(i\) at time \(t\) are described by the following differential equations: | |
""") | |
st.latex(r""" | |
\frac{d\mathbf{p}_i(t)}{dt} = \mathbf{v}_i(t) | |
""") | |
st.latex(r""" | |
\frac{d\mathbf{v}_i(t)}{dt} = \mathbf{a}_i(t) | |
""") | |
st.markdown(""" | |
Here, the acceleration \(\mathbf{a}_i(t)\) is the sum of three forces: | |
""") | |
st.latex(r""" | |
\mathbf{a}_i(t) = \mathbf{a}_{\text{separation}} + \mathbf{a}_{\text{alignment}} + \mathbf{a}_{\text{cohesion}} | |
""") | |
st.markdown("#### **1. Separation**") | |
st.markdown(""" | |
To prevent collisions, the separation force is calculated based on the distance \(d_{ij}\) between Boid \(i\) and its neighboring Boids \(j\): | |
""") | |
st.latex(r""" | |
\mathbf{a}_{\text{separation}} = \sum_{j \in N(i)} \frac{\mathbf{p}_i - \mathbf{p}_j}{d_{ij}^2} | |
""") | |
st.markdown("where \(N(i)\) is the set of neighboring Boids around Boid \(i\).") | |
st.markdown("#### **2. Alignment**") | |
st.markdown(""" | |
The alignment force encourages Boid \(i\) to match the average velocity \(\mathbf{v}_{\text{avg}}\) of its neighbors: | |
""") | |
st.latex(r""" | |
\mathbf{a}_{\text{alignment}} = \frac{\mathbf{v}_{\text{avg}} - \mathbf{v}_i}{\tau} | |
""") | |
st.markdown("where \(\tau\) is a scaling parameter.") | |
st.markdown("#### **3. Cohesion**") | |
st.markdown(""" | |
The cohesion force steers Boid \(i\) towards the average position \(\mathbf{C}_{\text{avg}}\) of its neighbors: | |
""") | |
st.latex(r""" | |
\mathbf{a}_{\text{cohesion}} = \frac{\mathbf{C}_{\text{avg}} - \mathbf{p}_i}{\sigma} | |
""") | |
st.markdown("where \(\sigma\) is a scaling parameter.") | |
st.markdown("### **Update Rules**") | |
st.markdown(""" | |
Each Boid's position and velocity are updated based on discrete time steps \(\Delta t\) as follows: | |
""") | |
st.latex(r""" | |
\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \mathbf{a}_i(t) \Delta t | |
""") | |
st.latex(r""" | |
\mathbf{p}_i(t + \Delta t) = \mathbf{p}_i(t) + \mathbf{v}_i(t + \Delta t) \Delta t | |
""") | |
st.markdown(""" | |
These equations ensure that each Boid updates its velocity and position based on the combined separation, alignment, and cohesion forces. | |
""") | |
st.markdown("### **Additional Features**") | |
st.markdown(""" | |
This simulation includes the following additional features: | |
1. **Boundary Avoidance**: When a Boid approaches the edge of the simulation area, it receives a steering force to remain within bounds, preventing it from moving off-screen. | |
2. **Trail Drawing**: The past positions of each Boid are displayed as trails, allowing visualization of their movement patterns. | |
""") | |
st.markdown("### **Parameters and Their Roles**") | |
st.markdown(""" | |
- **Boundary Margin (\(M\))**: The distance from the edge of the simulation area at which Boids begin to steer away. | |
- **Boundary Turn Factor (\(\gamma\))**: The strength of the steering force applied when avoiding boundaries. | |
These parameters allow fine-tuning of Boid behavior near the edges of the simulation area. | |
""") | |
# Animation settings | |
frame_rate = 30 # Frames per second | |
sleep_time = 1.0 / frame_rate | |
# Reset button | |
if st.sidebar.button("Reset Simulation"): | |
boids = [] | |
for _ in range(params['num_boids']): | |
position = [np.random.uniform(0, width), np.random.uniform(0, height)] | |
angle = np.random.uniform(0, 2 * np.pi) | |
velocity = [np.cos(angle), np.sin(angle)] | |
boids.append(Boid(position, velocity)) | |
# Animation loop | |
while True: | |
# Update Boids | |
for boid in boids: | |
boid.update(boids, width, height, params) | |
# Update Boids' positions | |
scatter.x = [boid.position[0] for boid in boids] | |
scatter.y = [boid.position[1] for boid in boids] | |
# Update trails | |
if params['draw_trail']: | |
trail_x = [] | |
trail_y = [] | |
for boid in boids: | |
trail_x.extend([pos[0] for pos in boid.history]) | |
trail_y.extend([pos[1] for pos in boid.history]) | |
trail_scatter.x = trail_x | |
trail_scatter.y = trail_y | |
# Update the Plotly figure | |
fig.data[0].x = scatter.x | |
fig.data[0].y = scatter.y | |
if params['draw_trail']: | |
fig.data[1].x = trail_scatter.x | |
fig.data[1].y = trail_scatter.y | |
# Display the animation | |
animation_placeholder.plotly_chart(fig, use_container_width=True) | |
# Control the frame rate | |
time.sleep(sleep_time) | |