Spaces:
Sleeping
Sleeping
File size: 9,506 Bytes
1997c01 d189e4c c1b14f2 3b30238 cad05f7 6dffaaa fc47506 b3ce4c2 41a489a a94835d 0577c6a f6965f4 39f75bf 79b6783 fc47506 3b30238 d22b489 d1715e3 83bc4a4 d1715e3 83bc4a4 552f08c f252c3c 315dd1d aa33587 f6965f4 552f08c 1997c01 6866b1f 7260f6e 51b1074 83cd13d e4cab2d fa181bd e4cab2d bc59653 699f39b 51b1074 56aa7c5 51b1074 56aa7c5 5b71dc5 bc59653 0939b73 d77dbe7 a4d5793 d8e3d53 0b6419d d8e3d53 0b6419d d8e3d53 c024d74 e517d5e 8a12b0f 7c424e1 fdcef48 8a12b0f 7c424e1 fdcef48 7c424e1 98e3569 8a12b0f 0391643 be8fbbb 10608aa 4dcad40 10608aa 0391643 7260f6e 0391643 39f75bf 0391643 39f75bf 0391643 7260f6e 0391643 c23380f fbce734 1729426 980735d 5b343bd 1729426 119aa8f b9a4efc 45fd1bd 39f75bf 3ea2200 7260f6e 9f66294 980735d 9f66294 e688670 157cf08 51b1074 e688670 1729426 f83432c 7a4a991 39f75bf 7260f6e c6a5618 7260f6e 98e3569 157cf08 5b343bd b2048d5 119aa8f c6a5618 1997c01 119aa8f 0fc8c61 39f75bf 119aa8f 1997c01 83cd13d 19ae57e 1997c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
import os
# ---------------------- Accessing data from Notion ---------------------- #
from notion_client import Client as client_notion
from config import landuseDatabaseId , subdomainAttributesDatabaseId
from imports_utils import fetch_all_database_pages
from imports_utils import get_property_value
from imports_utils import notion
from config import landuseColumnName
from config import subdomainColumnName
from config import sqmPerEmployeeColumnName
from config import thresholdsColumnName
from config import maxPointsColumnName
from config import domainColumnName
from imports_utils import fetchDomainMapper
from imports_utils import fetchSubdomainMapper
from imports_utils import notionToken
if notionToken is None:
raise Exception("Notion token not found. Please check the environment variables.")
else:
print("Notion token found successfully!")
landuse_attributes = fetch_all_database_pages(notion, landuseDatabaseId)
livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId)
landuseMapperDict = fetchDomainMapper (landuse_attributes)
livabilityMapperDict = fetchSubdomainMapper (livability_attributes)
# ---------------------- Accessing data from Speckle ---------------------- #
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import imports_utils
import speckle_utils
import data_utils
from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId
from imports_utils import speckleToken
from imports_utils import fetchDistanceMatrices
from config import distanceMatrixActivityNodes
from config import distanceMatrixTransportStops
if speckleToken is None:
raise Exception("Speckle token not found")
else:
print("Speckle token found successfully!")
CLIENT = SpeckleClient(host="https://speckle.xyz/")
account = get_default_account()
CLIENT.authenticate_with_token(token=speckleToken)
streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId)
matrices = fetchDistanceMatrices (streamDistanceMatrices)
streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId)
streamData = streamLanduses["@Data"]["@{0}"]
df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
df_lu = df_speckle_lu.copy()
df_lu = df_lu.astype(str)
df_lu = df_lu.set_index("ids", drop=False)
df_dm = matrices[distanceMatrixActivityNodes]
df_dm_transport = matrices[distanceMatrixTransportStops]
dm_dictionary = df_dm.to_dict('index')
df_dm_transport_dictionary = df_dm_transport.to_dict('index')
# filter activity nodes attributes
mask_connected = df_dm.index.tolist()
lu_columns = []
for name in df_lu.columns:
if name.startswith("lu+"):
lu_columns.append(name)
df_lu_filtered = df_lu[lu_columns].loc[mask_connected]
df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
df_lu_filtered = df_lu_filtered.astype(int)
df_lu_filtered = df_lu_filtered.T.groupby(level=0).sum().T
df_lu_filtered_dict = df_lu_filtered.to_dict('index')
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# ------------------------- Accessing input data from Grasshopper ------------------------- #
matrix = inputs['input']["matrix"]
matrix_transport = inputs['input']["transportMatrix"]
landuses = inputs['input']["landuse_areas"]
if df_lu_filtered is None or df_lu_filtered.empty:
landuses = inputs['input']["landuse_areas"]
df_landuses = pd.DataFrame(landuses).T
df_landuses = df_landuses.round(0).astype(int)
else:
df_landuses = df_lu_filtered
df_landuses = df_landuses.round(0).astype(int)
#df_landuses = df_lu_filtered
#df_landuses = df_landuses.round(0).astype(int)
attributeMapperDict_gh = inputs['input']["attributeMapperDict"]
landuseMapperDict_gh = inputs['input']["landuseMapperDict"]
alpha = inputs['input']["alpha"]
alpha = float(alpha)
threshold = inputs['input']["threshold"]
threshold = float(threshold)
df_matrix = pd.DataFrame(matrix).T
df_matrix = df_matrix.round(0).astype(int)
from imports_utils import splitDictByStrFragmentInColumnName
# List containing the substrings to check against
tranportModes = ["DRT", "GMT", "HSR"]
result_dicts = splitDictByStrFragmentInColumnName(df_dm_transport_dictionary, tranportModes)
# Accessing each dictionary
art_dict = result_dicts["DRT"]
gmt_dict = result_dicts["GMT"]
df_art_matrix = pd.DataFrame(art_dict).T
df_art_matrix = df_art_matrix.round(0).astype(int)
df_gmt_matrix = pd.DataFrame(gmt_dict).T
df_gmt_matrix = df_art_matrix.round(0).astype(int)
# create a mask based on the matrix size and ids, crop activity nodes to the mask
mask_connected = df_dm.index.tolist()
valid_indexes = [idx for idx in mask_connected if idx in df_landuses.index]
# Identify and report missing indexes
missing_indexes = set(mask_connected) - set(valid_indexes)
if missing_indexes:
print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}")
# Apply the filtered mask
df_landuses_filtered = df_landuses.loc[valid_indexes]
# find a set of unique domains, to which subdomains are aggregated
temp = []
for key, values in livabilityMapperDict.items():
domain = livabilityMapperDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
livabilityMapperDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
# find a list of unique subdomains, to which land uses are aggregated
temp = []
for key, values in landuseMapperDict.items():
subdomain = str(landuseMapperDict[key])
if subdomain != 0:
temp.append(subdomain)
subdomainsUnique = list(set(temp))
from imports_utils import landusesToSubdomains
from imports_utils import FindWorkplacesNumber
from imports_utils import computeAccessibility
from imports_utils import computeAccessibility_pointOfInterest
from imports_utils import remap
from imports_utils import accessibilityToLivability
"""
LivabilitySubdomainsWeights = landusesToSubdomains(df_dm,df_lu_filtered,landuseMapperDict,subdomainsUnique)
WorkplacesNumber = FindWorkplacesNumber(df_dm,livabilityMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
# prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs
LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1)
subdomainsAccessibility = computeAccessibility(df_dm,LivabilitySubdomainsInputs,alpha,threshold)
artAccessibility = computeAccessibility_pointOfInterest(df_art_matrix,'ART',alpha,threshold)
gmtAccessibility = computeAccessibility_pointOfInterest(df_gmt_matrix,'GMT+HSR',alpha,threshold)
AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1)
if 'jobs' not in subdomainsAccessibility.columns:
print("Error: Column 'jobs' does not exist in the subdomainsAccessibility.")
livability = accessibilityToLivability(df_dm,AccessibilityInputs,livabilityMapperDict,domainsUnique)
livability_dictionary = livability.to_dict('index')
LivabilitySubdomainsInputs_dictionary = LivabilitySubdomainsInputs.to_dict('index')
subdomainsAccessibility_dictionary = AccessibilityInputs.to_dict('index')
artmatrix = df_art_matrix.to_dict('index')
LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index')
"""
# Prepare the output
output = {
# "subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
# "livability_dictionary": livability_dictionary,
# "subdomainsWeights_dictionary": LivabilitySubdomainsInputs_dictionary,
"luDomainMapper": landuseMapperDict,
"attributeMapper": livabilityMapperDict,
# "fetchDm": dm_dictionary,
# "landuses":df_lu_filtered_dict
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch() |