Spaces:
Runtime error
Runtime error
import pandas as pd | |
from utils import normalize_text | |
import streamlit as st | |
from itertools import chain | |
from collections import Counter | |
### Data paths | |
# WIKIPEDIA_PATH = "./kensho_en_wiki_typing_technical.csv" | |
# WIKIDATA_PATH = "./wikidata_ss_processed.csv" | |
# REBEL_INFER_PATH = "./rebel_inference_processed_ss.csv" | |
# ENTITY_LINKING_PATH = "./linking_df_technical_min.csv" | |
relation_to_id = { | |
"uses": 2283, | |
"has_use": 366, | |
"part_of": 361, | |
"has_part": 527, | |
"made_from_material": 186, | |
"material_of": 186 | |
} | |
inverse_dict = { | |
'uses': 'has_use', | |
'has_use': 'uses', | |
'has_part': 'part_of', | |
'part_of': 'has_part', | |
'made_from_material': 'material_of', | |
'material_of': 'made_from_material' | |
} | |
all_relations = ['uses', 'has_part', 'has_use', 'part_of', 'made_from_material', 'material_of'] | |
st.title("Materials use case search app") | |
# User Input | |
input_text = st.text_input( | |
label="Enter the name of a material i.e iron, ceramic, steel, aluminum, plastic, etc and press Enter", | |
value="iron", | |
key="ent", | |
) | |
st.write("preparing data ...") | |
# Wikipedia metadata | |
def get_wiki_df(path="./kensho_en_wiki_typing_technical.csv"): | |
wiki_df = pd.read_csv(path) | |
# filter out technical articles | |
exclude_ids = set(wiki_df[(wiki_df.exclude == True) | (wiki_df.technical == False)].page_id.to_list()) | |
include_skpes = set(wiki_df[wiki_df.page_id.apply(lambda x: x not in exclude_ids)].skpe_id.to_list()) | |
skpe_to_wikidata = dict(zip(wiki_df.skpe_id.to_list(), wiki_df.item_id.to_list())) | |
wiki_df = wiki_df.drop(columns=['Unnamed: 0', 'en_probs', 'exclude']) | |
wiki_df = wiki_df.rename(columns={'title_x': 'en_title'}) | |
return wiki_df, include_skpes, skpe_to_wikidata | |
wiki_df, include_skpes, skpe_to_wikidata = get_wiki_df() | |
# KG data source 1: Wikidata | |
# @st.cache_data(persist="disk") | |
def get_wikidata_df(path="./wikidata_ss_processed.csv"): | |
wikidata_df = pd.read_csv(path) | |
# filter technical wikidata | |
wikidata_df = wikidata_df[wikidata_df.apply(lambda x: x.source_skpe in include_skpes and x.target_skpe in include_skpes, axis=1)] | |
wikidata_df['source_wikidata'] = wikidata_df.source_skpe.apply(lambda x: skpe_to_wikidata[x]) | |
wikidata_df['target_wikidata'] = wikidata_df.target_skpe.apply(lambda x: skpe_to_wikidata[x]) | |
wikidata_df = wikidata_df.drop(columns=['source_skpe', 'target_skpe']) | |
wikidata_df['source'] = 'wikidata' | |
return wikidata_df | |
## wikidata_df = get_wikidata_df() | |
# @st.cache_data(persist="disk") | |
def get_rebel_infer_df(path="./rebel_inference_processed_ss.csv"): | |
rebel_infer_df = pd.read_csv(path) | |
# filter technical | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: type(x.source_skpe_id) == str and type(x.target_skpe_id) == str, axis=1)] | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: x.source_skpe_id in skpe_to_wikidata.keys() and x.target_skpe_id in skpe_to_wikidata.keys(), axis=1)] | |
rebel_infer_df['source_wikidata'] = rebel_infer_df.source_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
rebel_infer_df['target_wikidata'] = rebel_infer_df.target_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
# rebel_infer_df['title_page_id'] = rebel_infer_df.page_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
rebel_infer_df = rebel_infer_df.drop(columns=['instance_id', 'source_text', 'target_text', 'page_skpe_id', 'source_skpe_id', 'target_skpe_id']) | |
rebel_infer_df = rebel_infer_df.rename(columns={'source_skpe_id': 'source_skpe', 'target_skpe_id': 'target_skpe', 'source': 'source_en', 'target': 'target_en'}) | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.source_wikidata != rebel_infer_df.target_wikidata] | |
rebel_infer_df['source'] = 'rebel_wikipedia' | |
return rebel_infer_df | |
## rebel_infer_df = get_rebel_infer_df() | |
# Add luke df | |
# Data source 3: luke inference | |
# @st.cache_data(persist="disk") | |
def get_luke_infer_df(path="./luke_fulltext_ss_infer_20240112.csv"): | |
luke_infer_df = pd.read_csv(path) | |
luke_infer_df = luke_infer_df.rename(columns={"source_mention": "source_en", "target_mention": "target_en", "pred": "relation"}) | |
luke_infer_df = luke_infer_df.drop(columns=["page_id", "sent_id", "model"]) | |
luke_infer_df['source'] = 'luke_wikipedia_20240112' | |
return luke_infer_df | |
## luke_infer_df = get_luke_infer_df() | |
# Build instance df | |
def build_instance_df(): | |
wikidata_df = get_wikidata_df() | |
rebel_infer_df = get_rebel_infer_df() | |
luke_infer_df = get_luke_infer_df() | |
instance_df = pd.concat([wikidata_df, rebel_infer_df, luke_infer_df]) | |
# instance_df = instance_df.reset_index(drop=True) | |
instance_df['instance_id'] = instance_df.index.to_list() | |
instance_df.relation = instance_df.relation.apply(lambda x: x.replace(' ', '_')) | |
instance_df['inv_relation'] = instance_df.relation.apply(lambda x: inverse_dict[x]) | |
instance_df.score = instance_df.score.fillna(1.0) | |
# instance_df = instance_df[instance_df.source == 'luke_wikipedia_20240112'] | |
return instance_df | |
instance_df = build_instance_df() | |
# Get KG df | |
def get_kg_df(path="./kg_master_ss_sample_20240215.csv"): | |
kg_df = pd.read_csv(path) | |
kg_df['kg_id'] = kg_df.index | |
kg_df = kg_df[kg_df.mode_relation.apply(lambda x: x in ['material_of', 'part_of', 'has_use'])] | |
kg_min_df = kg_df[['kg_id', 'source_en', 'source_wikidata', 'mode_relation' ,'target_en', 'target_wikidata']].copy() | |
return kg_df, kg_min_df | |
kg_df, kg_min_df = get_kg_df() | |
# Get entity linking df | |
def get_entity_linking_df(path="./linking_df_technical_min.csv"): | |
linking_df = pd.read_csv(path) | |
return linking_df | |
st.write("matching input text ...") | |
linking_df = get_entity_linking_df() | |
### Start ### | |
# normalise and match | |
text_norm = normalize_text(input_text) | |
match_df = linking_df[linking_df.text == text_norm] | |
match_df = match_df[match_df.skpe_id.apply(lambda x: x in skpe_to_wikidata.keys())] | |
match_df['wikidata_id'] = match_df.skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
# top match skpe | |
if len(match_df) > 0: | |
top_wikidata = match_df.wikidata_id.mode()[0] | |
all_wikidata = set(match_df.wikidata_id.to_list()) | |
wikidata_to_count = dict(match_df.wikidata_id.value_counts()) | |
# Match list | |
wiki_match_df = wiki_df[wiki_df.item_id.apply(lambda x: x in all_wikidata)].copy() | |
wiki_match_df['link_score'] = wiki_match_df['item_id'].apply(lambda x: wikidata_to_count[x] / sum(wikidata_to_count.values())) | |
wiki_match_df = wiki_match_df.sort_values(by='link_score', ascending=False) | |
# show similar results | |
st.write(f"Found following matches for the term {input_text}") | |
wiki_match_df.sort_values(by='views', ascending=False)[:5] | |
# proceeding with top match | |
st.write("Performing use case extraction for the following top match ...") | |
wiki_df[wiki_df.item_id.apply(lambda x: x == top_wikidata)] | |
# Stuff that are made out of input | |
start_df = kg_min_df[(kg_min_df.source_wikidata == top_wikidata) & (kg_min_df.mode_relation == 'material_of')].copy() | |
# made_of_list = made_of_df.source_wikidata.to_list() | |
if len(start_df) > 0: | |
st.write(f"Discovered following entities made out of {input_text}") | |
start_df | |
st.write("Extracting knowledge graph paths ...") | |
### Length 2 paths | |
path_2_df = start_df.merge( | |
kg_min_df[kg_min_df.mode_relation == 'has_use'], | |
left_on='target_wikidata', | |
right_on='source_wikidata', | |
how='inner') | |
path_2_df = path_2_df.rename(columns={ | |
'kg_id_x': 'first_relation_id', | |
'source_en_x': 'first_source_en', | |
'source_wikidata_x': 'first_source_wikidata', | |
'mode_relation_x': 'first_mode_relation', | |
'target_en_x': 'first_target_en', | |
'target_wikidata_x': 'first_target_wikidata', | |
'kg_id_y': 'second_relation_id', | |
'source_en_y': 'second_source_en', | |
'source_wikidata_y': 'second_source_wikidata', | |
'mode_relation_y': 'second_mode_relation', | |
'target_en_y': 'second_target_en', | |
'target_wikidata_y': 'second_target_wikidata', | |
}) | |
path_2_df['path_len'] = 2 | |
### Length 3 paths | |
path_3_df = start_df.merge( | |
kg_min_df[kg_min_df.mode_relation == 'part_of'], | |
left_on='target_wikidata', | |
right_on='source_wikidata', | |
how='inner').merge( | |
kg_min_df[kg_min_df.mode_relation == 'has_use'], | |
left_on='target_wikidata_y', | |
right_on='source_wikidata', | |
how='inner' | |
) | |
path_3_df = path_3_df.rename(columns={ | |
'kg_id_x': 'first_relation_id', | |
'source_en_x': 'first_source_en', | |
'source_wikidata_x': 'first_source_wikidata', | |
'mode_relation_x': 'first_mode_relation', | |
'target_en_x': 'first_target_en', | |
'target_wikidata_x': 'first_target_wikidata', | |
'kg_id_y': 'second_relation_id', | |
'source_en_y': 'second_source_en', | |
'source_wikidata_y': 'second_source_wikidata', | |
'mode_relation_y': 'second_mode_relation', | |
'target_en_y': 'second_target_en', | |
'target_wikidata_y': 'second_target_wikidata', | |
'kg_id': 'third_relation_id', | |
'source_en': 'third_source_en', | |
'source_wikidata': 'third_source_wikidata', | |
'mode_relation': 'third_mode_relation', | |
'target_en': 'third_target_en', | |
'target_wikidata': 'third_target_wikidata', | |
}) | |
path_3_df['path_len'] = 3 | |
path_df = pd.concat([path_2_df, path_3_df]) | |
# sample max | |
## path_df = path_df.sample(min(20, len(path_df))) | |
### End | |
if len(path_df) > 0: | |
st.write(f"Found {len(path_df)} knowledge graph paths relevant to use cases of {input_text}") | |
st.write("------") | |
# print all paths | |
for i, path in enumerate(path_df.to_dict(orient='records')): | |
if i > 5: | |
break | |
material = path['first_source_en'] | |
material_wikidata = path['first_source_wikidata'] | |
material_url = f"https://www.wikidata.org/wiki/Q{material_wikidata}" | |
use_case = path['third_target_en'] if path['path_len'] == 3 else path['second_target_en'] | |
use_case_wikidata = path['third_target_wikidata'] if path['path_len'] == 3 else path['second_target_wikidata'] | |
use_case_url = f"https://www.wikidata.org/wiki/Q{use_case_wikidata}" | |
st.write(f"**Reasoning Path {i+1}:**") | |
# for edge in path: | |
edge_prefixes = ['first', 'second', 'third'] | |
for k in range(path['path_len']): | |
prefix = edge_prefixes[k] | |
source_wikidata = int(path[f'{prefix}_source_wikidata']) | |
target_wikidata = int(path[f'{prefix}_target_wikidata']) | |
source_url = "https://www.wikidata.org/wiki/Q" + str(source_wikidata) | |
target_url = "https://www.wikidata.org/wiki/Q" + str(target_wikidata) | |
relation_url = "https://www.wikidata.org/wiki/Property:P" + str(int(relation_to_id[path[f'{prefix}_mode_relation']])) | |
source_en = path[f'{prefix}_source_en'] | |
target_en = path[f'{prefix}_target_en'] | |
relation = path[f'{prefix}_mode_relation'] | |
st.markdown(f"Edge {k+1}: [{source_en}]({source_url}) --[{relation}]({relation_url})--> [{target_en}]({target_url})") | |
with st.expander("Edge Metadata"): | |
rel_id = path[f'{prefix}_relation_id'] | |
rel_data = kg_df[kg_df.kg_id == rel_id].to_dict(orient='records')[0] | |
instance_ids = eval(rel_data[f'{relation}_instances']) | |
instances = instance_df.loc[instance_ids] | |
neg_instance_ids = list(chain.from_iterable([eval(rel_data[k]) for k in rel_data.keys() if '_instances' in k and relation not in k])) | |
neg_instances = instance_df.loc[neg_instance_ids] | |
# extra filtering | |
instances = instances[instances.apply(lambda x: x.source_wikidata in [source_wikidata, target_wikidata] and x.target_wikidata in [source_wikidata, target_wikidata], axis=1)] | |
# neg_instances = neg_instances[neg_instances.apply(lambda x: x.source_wikidata in [source_wikidata, target_wikidata] and x.target_wikidata in [source_wikidata, target_wikidata], axis=1)] | |
st.write(f"**Total Number of Inference Instances:** {int(rel_data['n_evidence'])}") | |
st.write(f"**Number of Instances that support the most frequent relation:** {int(rel_data['n_support'])}") | |
st.write(f"**Support Ratio:** {rel_data['support_ratio']}") | |
st.write(f"**Average Inference Score:** {rel_data['avg_score']}") | |
st.write("Inferences supporting the relation") | |
instances[['source_en', 'relation', 'target_en', 'text', 'source_wikidata', 'target_wikidata', 'source', 'page_title', 'score', 'section']] | |
st.write("Other inferences involving the same edge") | |
neg_instances[['source_en', 'relation', 'target_en', 'text', 'source_wikidata', 'target_wikidata', 'source', 'page_title', 'score', 'section']] | |
count_dict = {relation: rel_data[f'{relation}_support'] for relation in all_relations} | |
count_df = pd.DataFrame.from_dict(count_dict, orient='index') | |
count_df.columns = ['count'] | |
st.write("Inference distribution for above edge") | |
count_df | |
st.write("**Conclusion:**") | |
st.write(f"[{material}]({material_url}) is useful for [{use_case}]({use_case_url})") | |
st.write("------") | |
else: | |
st.write("Found no knowledge graph paths relevant to use cases") | |
else: | |
st.write("Found no entities that are made from {input_text}") | |
else: | |
st.write("no matches") |