File size: 11,437 Bytes
f760ec3
 
cb76d50
 
 
 
 
 
 
 
 
08090c3
cb76d50
 
 
 
08090c3
 
 
 
cb76d50
 
 
 
 
 
 
 
08090c3
 
cb76d50
 
295dbc0
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af6a1d7
 
cb76d50
 
 
 
8dd2bc6
 
cb76d50
8dd2bc6
af6a1d7
cb76d50
 
58f2ab9
 
cb76d50
 
58f2ab9
8dd2bc6
af6a1d7
8dd2bc6
08090c3
 
cb76d50
 
 
58f2ab9
cb76d50
 
 
 
 
 
 
 
 
 
f760ec3
 
 
 
 
3d8ee64
cb76d50
c72f38a
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08090c3
 
 
 
 
 
 
 
 
 
 
 
 
39f8f41
08090c3
 
 
 
 
 
 
cb76d50
08090c3
 
 
 
 
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd2bc6
295dbc0
 
eba677f
08090c3
cb76d50
23efaf2
8dd2bc6
cb76d50
 
3d8ee64
 
cb76d50
 
 
 
 
3d8ee64
cb76d50
 
3d8ee64
 
 
 
 
cb76d50
 
 
 
0154388
 
 
 
08090c3
 
 
 
 
 
0154388
 
 
 
 
 
 
 
 
 
 
 
08090c3
 
cb76d50
8dd2bc6
08090c3
cb76d50
 
08090c3
cb76d50
f760ec3
8dd2bc6
76e2fde
f760ec3
 
0154388
ca8e444
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
## LIBRARIES ###
## Data
import numpy as np
import pandas as pd
import torch
import json
from tqdm import tqdm
from math import floor
from datasets import load_dataset
from collections import defaultdict
from transformers import AutoTokenizer
pd.options.display.float_format = '${:,.2f}'.format

# Analysis
# from gensim.models.doc2vec import Doc2Vec
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import nltk
from nltk.cluster import KMeansClusterer
import scipy.spatial.distance as sdist
from scipy.spatial import distance_matrix
# nltk.download('punkt') #make sure that punkt is downloaded

# App & Visualization
import streamlit as st
import altair as alt
import plotly.graph_objects as go
from streamlit_vega_lite import altair_component



# utils
from random import sample
from error_analysis import utils as ut


def down_samp(embedding):
    """Down sample a data frame for altiar visualization """
    # total number of positive and negative sentiments in the class
    #embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
    total_size = embedding.groupby(['slice','label'], as_index=False).count()

    user_data = 0
    # if 'Your Sentences' in str(total_size['slice']):
    #     tmp = embedding.groupby(['slice'], as_index=False).count()
    #     val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
    #     user_data = val

    max_sample = total_size.groupby('slice').max()['content']

    # # down sample to meeting altair's max values
    # # but keep the proportional representation of groups
    down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))

    max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict()
    max_samp['Your Sentences'] = user_data

    # # sample down for each group in the data frame
    embedding = embedding.groupby('slice').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)

    # # order the embedding
    return(embedding)


def data_comparison(df):
    selection = alt.selection_multi(fields=['cluster:N','label:O'])
    color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale = alt.Scale(domain=df.cluster.unique().tolist())), alt.value("lightgray"))
    opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))

    # basic chart
    scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
        x=alt.X('x:Q', axis=None),
        y=alt.Y('y:Q', axis=None),
        color=color,
        shape=alt.Shape('label:O', scale=alt.Scale(range=['circle', 'diamond'])),
        tooltip=['cluster:N','slice:N','content:N','label:O','pred:O'],
        opacity=opacity
    ).properties(
        width=1000,
        height=800
    ).interactive()

    legend = alt.Chart(df).mark_point(size=100, filled=True).encode(
        x=alt.X("label:O"),
        y=alt.Y('cluster:N', axis=alt.Axis(orient='right'), title=""),
        shape=alt.Shape('label:O', scale=alt.Scale(
        range=['circle', 'diamond']), legend=None),
        color=color,
    ).add_selection(
        selection
    )
    layered = scatter | legend
    layered = layered.configure_axis(
        grid=False
    ).configure_view(
        strokeOpacity=0
    )
    return layered

def quant_panel(embedding_df):
    """ Quantitative Panel Layout"""
    all_metrics = {}
    st.warning("**Error slice visualization**")
    with st.expander("How to read this chart:"):
        st.markdown("* Each **point** is an input example.")
        st.markdown("* Gray points have low-loss and the colored have high-loss. High-loss instances are clustered using **kmeans** and each color represents a cluster.")
        st.markdown("* The **shape** of each point reflects the label category --  positive (diamond) or negative sentiment (circle).")
    st.altair_chart(data_comparison(down_samp(embedding_df)), use_container_width=True)


def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
    unique_tokens = []
    tokens = []
    for row in tqdm(data['content']):
        tokenized = tokenizer(row,padding=True, return_tensors='pt')
        tokens.append(tokenized['input_ids'].flatten())
        unique_tokens.append(torch.unique(tokenized['input_ids']))
    losses = data['loss'].astype(float)
    high_loss = losses.quantile(loss_quantile)
    loss_weights = (losses > high_loss)
    loss_weights = loss_weights / loss_weights.sum()
    token_frequencies = defaultdict(float)
    token_frequencies_error = defaultdict(float)

    weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))

    num_examples = len(data)
    for i in tqdm(range(num_examples)):
        for token in unique_tokens[i]:
            token_frequencies[token.item()] += weights_uniform[i]
            token_frequencies_error[token.item()] += loss_weights[i]

    token_lrs = {k: (smoothing+token_frequencies_error[k]) / (smoothing+token_frequencies[k]) for k in token_frequencies}
    tokens_sorted = list(map(lambda x: x[0], sorted(token_lrs.items(), key=lambda x: x[1])[::-1]))

    top_tokens = []
    for i, (token) in enumerate(tokens_sorted[:top_k]):
        top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
            token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
    return pd.DataFrame(top_tokens, columns=['Token', 'Freq', 'Freq error slice', 'lrs'])


@st.cache(ttl=600)
def get_data(spotlight, emb):
    preds = spotlight.outputs.numpy()
    losses = spotlight.losses.numpy()
    embeddings = pd.DataFrame(emb, columns=['x', 'y'])
    num_examples = len(losses)
    # dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
    return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'], 
                    dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)

@st.cache(ttl=600)
def clustering(data,num_clusters):
    X = np.array(data['embedding'].tolist())
    kclusterer = KMeansClusterer(
        num_clusters, distance=nltk.cluster.util.cosine_distance,
        repeats=25,avoid_empty_clusters=True)
    assigned_clusters = kclusterer.cluster(X, assign_clusters=True)
    data['cluster'] = pd.Series(assigned_clusters, index=data.index).astype('int')
    data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x])
        

    return data, assigned_clusters

@st.cache(ttl=600)
def kmeans(df, num_clusters=3):
    data_hl = df.loc[df['slice'] == 'high-loss']
    data_kmeans,clusters = clustering(data_hl,num_clusters)
    merged = pd.merge(df, data_kmeans, left_index=True, right_index=True, how='outer', suffixes=('', '_y'))
    merged.drop(merged.filter(regex='_y$').columns.tolist(),axis=1,inplace=True)
    merged['cluster'] = merged['cluster'].fillna(num_clusters).astype('int')
    return merged

@st.cache(ttl=600)
def distance_from_centroid(row):
    return sdist.norm(row['embedding'] - row['centroid'].tolist())

@st.cache(ttl=600)
def topic_distribution(weights, smoothing=0.01):
    topic_frequencies = defaultdict(float)
    topic_frequencies_spotlight = defaultdict(float)
    weights_uniform = np.full_like(weights, 1 / len(weights))
    num_examples = len(weights)
    for i in range(num_examples):
        example = dataset[i]
        category = example['title']
        topic_frequencies[category] += weights_uniform[i]
        topic_frequencies_spotlight[category] += weights[i]

    topic_ratios = {c: (smoothing + topic_frequencies_spotlight[c]) / (
        smoothing + topic_frequencies[c]) for c in topic_frequencies}

    categories_sorted = map(lambda x: x[0], sorted(
        topic_ratios.items(), key=lambda x: x[1], reverse=True))

    topic_distr = []
    for category in categories_sorted:
        topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
                           topic_frequencies_spotlight[category], '%.2f' % topic_ratios[category], '%s' % category])

    return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
    # for category in categories_sorted:
    #    return(topic_frequencies[category], topic_frequencies_spotlight[category], topic_ratios[category], category)


if __name__ == "__main__":
    ### STREAMLIT APP CONGFIG ###
    st.set_page_config(layout="wide", page_title="Interactive Error Analysis")

    ut.init_style()

    lcol, rcol = st.columns([2, 2])
    # ******* loading the mode and the data
    #st.sidebar.mardown("<h4>Interactive Error Analysis</h4>", unsafe_allow_html=True)

    dataset = st.sidebar.selectbox(
        "Dataset",
        ["amazon_polarity", "yelp_polarity"],
        index = 1
    )

    model = st.sidebar.selectbox(
        "Model",
        ["distilbert-base-uncased-finetuned-sst-2-english",
            "albert-base-v2-yelp-polarity"],
    )
    ### LOAD DATA AND SESSION VARIABLES ###
    data_df = pd.read_parquet('./assets/data/'+dataset+ '_'+ model+'.parquet')
    if model == 'albert-base-v2-yelp-polarity':
        tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model)
    if "user_data" not in st.session_state:
        st.session_state["user_data"] = data_df
    if "selected_slice" not in st.session_state:
        st.session_state["selected_slice"] = None
 
    loss_quantile = st.sidebar.slider(
        "Loss Quantile", min_value=0.5, max_value=1.0,step=0.01,value=0.95
    )
    data_df['loss'] = data_df['loss'].astype(float)
    losses = data_df['loss']
    high_loss = losses.quantile(loss_quantile)
    data_df['slice'] = 'high-loss'
    data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')

    with rcol:
        with st.spinner(text='loading...'):
            st.markdown('<h3>Word Distribution in Error Slice</h3>', unsafe_allow_html=True)
            commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
            with st.expander("How to read the table:"):
                st.markdown("* The table displays the most frequent tokens in error slices, relative to their frequencies in the val set.")
            st.write(commontokens)

    run_kmeans = st.sidebar.radio("Cluster error slice?", ('True', 'False'), index=0)

    num_clusters = st.sidebar.slider("# clusters", min_value=1, max_value=20, step=1, value=3)

    if run_kmeans == 'True':
        merged = kmeans(data_df,num_clusters=num_clusters)
    with lcol:
        st.markdown('<h3>Error Slices</h3>',unsafe_allow_html=True)
        dataframe = merged[['content', 'label', 'pred', 'loss', 'cluster']].sort_values(
            by=['loss'], ascending=False)
        table_html = dataframe.to_html(
            columns=['content', 'label', 'pred', 'loss', 'cluster'], max_rows=50)
        # table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
        with st.expander("How to read the table:"):
            st.markdown("* *Error slice* refers to the subset of evaluation dataset the model performs poorly on.")
            st.markdown("* The table displays model error slices on the evaluation dataset, sorted by loss.")
            st.markdown("* Each row is an input example that includes the label, model pred, loss, and error cluster.")
        st.write(dataframe,width=900, height=300)

    quant_panel(merged)