ndhieunguyen's picture
Add application file
7dd9869
import argparse
from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
# from .unet import SuperResModel
NUM_CLASSES = 1000
def model_and_diffusion_defaults():
"""
Defaults for image training.
"""
return dict(
image_size=64,
num_channels=128,
num_res_blocks=2,
num_heads=4,
num_heads_upsample=-1,
attention_resolutions="16,8",
dropout=0.0,
learn_sigma=False,
class_cond=False,
diffusion_steps=1000,
noise_schedule="linear",
timestep_respacing="",
use_kl=False,
predict_xstart=False,
rescale_timesteps=True,
rescale_learned_sigmas=True,
use_checkpoint=False,
use_scale_shift_norm=True,
model_arch="trans-unet",
in_channel=8,
out_channel=8,
training_mode="emb",
vocab_size=66,
config_name="QizhiPei/biot5-base-text2mol",
experiment_mode="lm",
logits_mode=1,
)
# def sr_model_and_diffusion_defaults():
# res = model_and_diffusion_defaults()
# res["large_size"] = 256
# res["small_size"] = 64
# arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
# for k in res.copy().keys():
# if k not in arg_names:
# del res[k]
# return res
# def sr_create_model_and_diffusion(
# large_size,
# small_size,
# class_cond,
# learn_sigma,
# num_channels,
# num_res_blocks,
# num_heads,
# num_heads_upsample,
# attention_resolutions,
# dropout,
# diffusion_steps,
# noise_schedule,
# timestep_respacing,
# use_kl,
# predict_xstart,
# rescale_timesteps,
# rescale_learned_sigmas,
# use_checkpoint,
# use_scale_shift_norm,
# ):
# model = sr_create_model(
# large_size,
# small_size,
# num_channels,
# num_res_blocks,
# learn_sigma=learn_sigma,
# class_cond=class_cond,
# use_checkpoint=use_checkpoint,
# attention_resolutions=attention_resolutions,
# num_heads=num_heads,
# num_heads_upsample=num_heads_upsample,
# use_scale_shift_norm=use_scale_shift_norm,
# dropout=dropout,
# )
# diffusion = create_gaussian_diffusion(
# steps=diffusion_steps,
# learn_sigma=learn_sigma,
# noise_schedule=noise_schedule,
# use_kl=use_kl,
# predict_xstart=predict_xstart,
# rescale_timesteps=rescale_timesteps,
# rescale_learned_sigmas=rescale_learned_sigmas,
# timestep_respacing=timestep_respacing,
# )
# return model, diffusion
# def sr_create_model(
# large_size,
# small_size,
# num_channels,
# num_res_blocks,
# learn_sigma,
# class_cond,
# use_checkpoint,
# attention_resolutions,
# num_heads,
# num_heads_upsample,
# use_scale_shift_norm,
# dropout,
# ):
# _ = small_size # hack to prevent unused variable
# if large_size == 256:
# channel_mult = (1, 1, 2, 2, 4, 4)
# elif large_size == 64:
# channel_mult = (1, 2, 3, 4)
# else:
# raise ValueError(f"unsupported large size: {large_size}")
# attention_ds = []
# for res in attention_resolutions.split(","):
# attention_ds.append(large_size // int(res))
# return SuperResModel(
# in_channels=3,
# model_channels=num_channels,
# out_channels=(3 if not learn_sigma else 6),
# num_res_blocks=num_res_blocks,
# attention_resolutions=tuple(attention_ds),
# dropout=dropout,
# channel_mult=channel_mult,
# num_classes=(NUM_CLASSES if class_cond else None),
# use_checkpoint=use_checkpoint,
# num_heads=num_heads,
# num_heads_upsample=num_heads_upsample,
# use_scale_shift_norm=use_scale_shift_norm,
# )
def create_gaussian_diffusion(
*,
steps=1000,
learn_sigma=False,
noise_schedule="linear", # sqrt
use_kl=False,
predict_xstart=False, # True
rescale_timesteps=False, # True
rescale_learned_sigmas=False, # True
timestep_respacing="",
model_arch="conv-unet", # transformer
training_mode="emb", # e2e
):
return SpacedDiffusion(
use_timesteps=space_timesteps(2000, [2000]),
betas=gd.get_named_beta_schedule("sqrt", 2000),
model_mean_type=(gd.ModelMeanType.START_X),
model_var_type=(
(gd.ModelVarType.FIXED_LARGE)
if not learn_sigma
else gd.ModelVarType.LEARNED_RANGE
),
loss_type=gd.LossType.E2E_MSE,
rescale_timesteps=True,
model_arch="transformer",
training_mode="e2e",
)
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys):
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")