ndhieunguyen's picture
Add application file
7dd9869
import os
import copy
import functools
import blobfile as bf
import torch
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from . import dist_util, logger
from .fp16_util import (
make_master_params,
master_params_to_model_params,
model_grads_to_master_grads,
unflatten_master_params,
zero_grad,
)
from .nn import update_ema
from .resample import LossAwareSampler, UniformSampler
import wandb
from tqdm import tqdm
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(
self,
*,
model,
diffusion,
data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
checkpoint_path="",
gradient_clipping=-1.0,
eval_data=None,
eval_interval=-1,
):
print('Initiating train loop')
rank = dist.get_rank()
world_size = dist.get_world_size()
self.rank = rank
self.world_size = world_size
self.diffusion = diffusion
self.data = data
self.eval_data = eval_data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr * world_size
self.ema_rate = (
[ema_rate]
if isinstance(ema_rate, float)
else [float(x) for x in ema_rate.split(",")]
)
self.log_interval = log_interval
self.eval_interval = eval_interval
self.save_interval = save_interval
self.resume_checkpoint = resume_checkpoint
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.weight_decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.gradient_clipping = gradient_clipping
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size * dist.get_world_size()
self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
self.sync_cuda = torch.cuda.is_available()
self.checkpoint_path = checkpoint_path
self.model = model.to(rank)
if torch.cuda.is_available(): # DEBUG **
self.use_ddp = True
self.ddp_model = self.model
# self.ddp_model = DDP(
# self.model,
# device_ids=[self.rank],
# find_unused_parameters=False,
# )
else:
self.ddp_model = model.to("cpu")
self.model_params = list(self.ddp_model.parameters())
self.master_params = self.model_params
self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
if self.resume_step:
# self._load_optimizer_state()
# # Model was resumed, either due to a restart or a checkpoint
# # being specified at the command line.
# self.ema_params = [
# self._load_ema_parameters(rate) for rate in self.ema_rate
# ]
pass
else:
self.ema_params = [
copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
]
print('Finish initiating train loop')
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
if dist.get_rank() == 0:
# logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
print(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
)
dist_util.sync_params(self.model.parameters())
def _load_ema_parameters(self, rate):
ema_params = copy.deepcopy(self.master_params)
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
if ema_checkpoint:
if dist.get_rank() == 0:
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
state_dict = dist_util.load_state_dict(
ema_checkpoint, map_location=dist_util.dev()
)
ema_params = self._state_dict_to_master_params(state_dict)
dist_util.sync_params(ema_params)
return ema_params
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def _setup_fp16(self):
self.master_params = make_master_params(self.model_params)
self.model.convert_to_fp16()
def run_loop(self):
pbar = tqdm(total=self.lr_anneal_steps // self.world_size)
print('Start running train loop')
while (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps // self.world_size
):
pbar.set_description(f"Step: {self.step + self.resume_step}")
batch = next(self.data)
# if self.step<3:
# print("RANK:",self.rank,"STEP:",self.step,"BATCH:",batch)
self.run_step(batch, cond=None)
if self.step % self.log_interval == 0:
# dist.barrier()
pass
# print('loggggg')
# logger.dumpkvs()
if self.eval_data is not None and self.step % self.eval_interval == 0:
# batch_eval, cond_eval = next(self.eval_data)
# self.forward_only(batch, cond)
print("eval on validation set")
pass # logger.dumpkvs()
if self.step % self.save_interval == 0 and self.step != 0:
self.save()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
pbar.update(1)
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
if self.use_fp16:
self.optimize_fp16()
else:
self.optimize_normal()
self.log_step()
def forward_only(self, batch, cond):
with torch.no_grad():
zero_grad(self.model_params)
for i in range(0, batch.shape[0], self.microbatch):
micro = batch[i : i + self.microbatch].to(dist_util.dev())
micro_cond = {
k: v[i : i + self.microbatch].to(dist_util.dev())
for k, v in cond.items()
}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(
micro.shape[0], dist_util.dev()
)
# print(micro_cond.keys())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
log_loss_dict(
self.diffusion,
t,
{f"eval_{k}": v * weights for k, v in losses.items()},
)
def forward_backward(self, batch, cond):
# zero_grad(self.model_params)
self.opt.zero_grad()
for i in range(0, batch[0].shape[0], self.microbatch):
# micro = batch[i : i + self.microbatch].to(self.rank)
# last_batch = (i + self.microbatch) >= batch.shape[0]
# t, weights = self.schedule_sampler.sample(micro.shape[0], self.rank)
micro = (
batch[0].to(self.rank), # selfies_ids
batch[1].to(self.rank), # caption_state
batch[2].to(self.rank), # caption_mask
batch[3].to(self.rank), # corrupted_selfies_ids
)
last_batch = True
t, weights = self.schedule_sampler.sample(micro[0].shape[0], self.rank)
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
None,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
# print('----DEBUG-----',self.step,self.log_interval)
if self.step % self.log_interval == 0 and self.rank == 0:
print("rank0: ", self.step, loss.item())
wandb.log({"loss": loss.item()})
# log_loss_dict(
# self.diffusion, t, {k: v * weights for k, v in losses.items()}
# )
if self.use_fp16:
# loss_scale = 2 ** self.lg_loss_scale
# (loss * loss_scale).backward()
pass
else:
loss.backward()
def optimize_fp16(self):
if any(not torch.isfinite(p.grad).all() for p in self.model_params):
self.lg_loss_scale -= 1
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
return
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2**self.lg_loss_scale))
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
master_params_to_model_params(self.model_params, self.master_params)
self.lg_loss_scale += self.fp16_scale_growth
def grad_clip(self):
# print('doing gradient clipping')
max_grad_norm = self.gradient_clipping # 3.0
if hasattr(self.opt, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.opt.clip_grad_norm(max_grad_norm)
# else:
# assert False
# elif hasattr(self.model, "clip_grad_norm_"):
# # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
# self.model.clip_grad_norm_(args.max_grad_norm)
else:
# Revert to normal clipping otherwise, handling Apex or full precision
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), # amp.master_params(self.opt) if self.use_apex else
max_grad_norm,
)
def optimize_normal(self):
if self.gradient_clipping > 0:
self.grad_clip()
# self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
def _log_grad_norm(self):
sqsum = 0.0
for p in self.master_params:
sqsum += (p.grad**2).sum().item()
# logger.logkv_mean("grad_norm", np.sqrt(sqsum))
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
# logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
if self.use_fp16:
logger.logkv("lg_loss_scale", self.lg_loss_scale)
def save(self):
def save_checkpoint(rate, params):
state_dict = self._master_params_to_state_dict(params)
if dist.get_rank() == 0:
# logger.log(f"saving model {rate}...")
print(f"saving model {rate}...")
if not rate:
filename = f"PLAIN_model{((self.step+self.resume_step)*self.world_size):06d}.pt"
else:
filename = f"PLAIN_ema_{rate}_{((self.step+self.resume_step)*self.world_size):06d}.pt"
# print('writing to', bf.join(get_blob_logdir(), filename))
# print('writing to', bf.join(self.checkpoint_path, filename))
# with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
# torch.save(state_dict, f)
with bf.BlobFile(
bf.join(self.checkpoint_path, filename), "wb"
) as f: # DEBUG **
torch.save(state_dict, f)
save_checkpoint(0, self.master_params)
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
# if dist.get_rank() == 0: # DEBUG **
# with bf.BlobFile(
# bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
# "wb",
# ) as f:
# torch.save(self.opt.state_dict(), f)
dist.barrier()
def _master_params_to_state_dict(self, master_params):
if self.use_fp16:
master_params = unflatten_master_params(
list(self.model.parameters()), master_params # DEBUG **
)
state_dict = self.model.state_dict()
for i, (name, _value) in enumerate(self.model.named_parameters()):
assert name in state_dict
state_dict[name] = master_params[i]
return state_dict
def _state_dict_to_master_params(self, state_dict):
params = [state_dict[name] for name, _ in self.model.named_parameters()]
if self.use_fp16:
return make_master_params(params)
else:
return params
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
return os.environ.get("DIFFUSION_BLOB_LOGDIR", logger.get_dir())
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def find_ema_checkpoint(main_checkpoint, step, rate):
if main_checkpoint is None:
return None
filename = f"ema_{rate}_{(step):06d}.pt"
path = bf.join(bf.dirname(main_checkpoint), filename)
if bf.exists(path):
return path
return None
def log_loss_dict(diffusion, ts, losses):
return
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)