Spaces:
Sleeping
Sleeping
File size: 12,376 Bytes
519b419 8da674b 519b419 f832cf5 8da674b 519b419 8da674b 519b419 8da674b 519b419 f832cf5 519b419 f832cf5 8da674b 519b419 8da674b 519b419 8da674b 519b419 8da674b f832cf5 519b419 f832cf5 519b419 8da674b f832cf5 519b419 f832cf5 519b419 f832cf5 519b419 8da674b f832cf5 519b419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import streamlit as st
from streamlit.components.v1 import html
from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
TITLE = "NER4ARCHIVES Analytics"
# Set application
st.set_page_config(layout="wide")
# sidebar: meta, inputs etc.
sidebar = st.sidebar
# cols: display results
col1, col2 = st.columns(2)
# description
#sidebar.markdown(f"# ๐ {TITLE}")
sidebar.markdown(f"""
# ๐ {TITLE}
A basic web application to display a dashboard for
analyzing INCEpTION annotation project built in context
of NER4Archives (Inria/Archives nationales).
- This tool provides two statistics levels:
- *Global project statistics*: Analyze named entities in overall curated documents in project;
- *Inter-Annotator Agreement results*: Analyze results of IAA experiment.
""")
# Level to analyze
option = sidebar.selectbox('Which statistics level?', ('Inter-Annotator Agreement results', 'Global project statistics'))
# IAA results view
if option == "Inter-Annotator Agreement results":
annotations = sidebar.file_uploader("Upload IAA annotations (.zip format only): ")
baseline_text = sidebar.file_uploader("Upload baseline text (.txt format only): ")
if baseline_text is not None and annotations is not None:
project_analyzed = IaaStatistics(zip_project=annotations, baseline_text=baseline_text.getvalue())
baseline_analyzer = project_analyzed.analyze_text()
col2.markdown(f"""
### BASELINE TEXT: {baseline_text.name}
- sentences: {baseline_analyzer[0]}
- words: {baseline_analyzer[1]}
- characters: {baseline_analyzer[2]}
""")
#print(project_analyzed.annotations_per_coders)
commune_mentions = [l for i,j in project_analyzed.mentions_per_coder.items() for l in j]
commune_mentions = list(dict.fromkeys(commune_mentions))
#print(commune_mentions)
#print(project_analyzed.annotations)
#print(project_analyzed.labels_per_coder)
import pandas as pd
from collections import defaultdict, Counter
from itertools import combinations
import seaborn as sn
import matplotlib as plt
import matplotlib.pyplot as pylt
dicts_coders = []
for coder, annotations in project_analyzed.annotations_per_coders.items():
nombre_annotations = []
# print(f'* {coder}')
for annotation, label in annotations.items():
nombre_annotations.append(label)
# print(f"Nombre total d'annotations : {len(nombre_annotations)}")
dict_coder = dict(Counter(nombre_annotations))
dicts_coders.append(dict_coder)
# print(f'==========================')
labels = [label for label in dicts_coders[0]]
from n4a_analytics_lib.metrics_utils import interpret_kappa, fleiss_kappa_function, cohen_kappa_function
df = pd.DataFrame(project_analyzed.annotations_per_coders, index=commune_mentions)
for ann in project_analyzed.annotators:
df[ann] = 'None'
for mention, value in project_analyzed.annotations_per_coders[ann].items():
df.loc[mention, ann] = value
total_annotations = len(df)
# print(f'* Total des annotations : {total_annotations}')
df_n = df.apply(pd.Series.value_counts, 1).fillna(0).astype(int)
matrix = df_n.values
pairs = list(combinations(project_analyzed.annotations_per_coders, 2))
# Display in app
#cont_kappa = st.container()
st.title("Inter-Annotator Agreement (IAA) results")
#tab1, tab2, tab3, tab4, tab5 = st.tabs(
# ["๐ IAA metrics", "๐ IAA Metrics Legend", "โ๏ธ Agree annotations", "โ Disagree annotations",
# "๐ท๏ธ Global Labels Statistics"])
st.markdown("## ๐ IAA metrics")
col1_kappa, col2_kappa = st.columns(2)
col1_kappa.subheader("Fleiss Kappa (global score for group):")
col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
# tab1.dataframe(df)
data = []
for coder_1, coder_2 in pairs:
cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
data.append(((coder_1, coder_2), cohen_function))
col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
# print(f"* {coder_1} <> {coder_2} : {cohen_function}")
intermediary = defaultdict(Counter)
for (src, tgt), count in data:
intermediary[src][tgt] = count
letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))
confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
import numpy as np
df_cm = pd.DataFrame(confusion_matrix, letters, letters)
mask = df_cm.values == 0
sn.set(font_scale=0.7) # for label size
colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
width = st.slider("matrix width", 1, 10, 14)
height = st.slider("matrix height", 1, 10, 4)
fig, ax = pylt.subplots(figsize=(width, height))
sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
# plt.show()
st.pyplot(ax.figure)
col2_kappa.markdown("""
<div>
<div id="legend" style="right: 70em;">
<h3>๐ IAA Metrics Legend</h3>
<table>
<thead>
<tr>
<th
colspan="2"> Kappa
interpretation
legend </th>
</tr>
</thead>
<tbody>
<tr>
<td> Kappa
score(k) </td>
<td>Agreement</td>
</tr>
<tr
style = "background-color: #e74c3c;">
<td> k < 0 </td>
<td> Less
chance
agreement </td>
</tr>
<tr
style = "background-color: #f39c12;">
<td> 0.01 < k < 0.20 </td>
<td> Slight
agreement </td>
</tr>
<tr
style = "background-color: #f4d03f;">
<td> 0.21 < k < 0.40 </td>
<td> Fair
agreement </td>
</tr>
<tr
style = "background-color: #5dade2;">
<td> 0.41 < k < 0.60 </td>
<td> Moderate
agreement </td>
</tr>
<tr
style = "background-color: #58d68d;">
<td> 0.61 < k < 0.80 </td>
<td> Substantial
agreement </td>
</tr>
<tr
style = "background-color: #28b463;">
<td> 0.81 < k < 0.99 </td>
<td> Almost
perfect
agreement </td>
</tr>
</tbody>
</table></div></div>"""
, unsafe_allow_html = True)
## commune
@st.cache
def convert_df(df_ex):
return df_ex.to_csv(encoding="utf-8").encode('utf-8')
## Agree part
columns_to_compare = project_analyzed.annotators
def check_all_equal(iterator):
return len(set(iterator)) <= 1
df_agree = df[df[columns_to_compare].apply(lambda row: check_all_equal(row), axis=1)]
total_unanime = len(df_agree)
csv_agree = convert_df(df_agree)
st.subheader("โ๏ธ Agree annotations")
st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
st.download_button(
"Press to Download CSV",
csv_agree,
"csv_annotators_agree.csv",
"text/csv",
key='download-csv-1'
)
st.dataframe(df_agree)
## Disagree part
def check_all_not_equal(iterator):
return len(set(iterator)) > 1
df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
total_desaccord = len(df_disagree)
csv_disagree = convert_df(df_disagree)
st.subheader("โ Disagree annotations")
st.markdown(
f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
st.download_button(
"Press to Download CSV",
csv_disagree,
"csv_annotators_disagree.csv",
"text/csv",
key='download-csv-2'
)
st.dataframe(df_disagree)
## alignement chart labels
def count_total_annotations_label(dataframe, labels):
pairs = []
for label in labels:
total = dataframe.astype(object).eq(label).any(1).sum()
pairs.append((label, total))
return pairs
totals_annotations_per_labels = count_total_annotations_label(df, labels)
# Rรฉcupรฉrer le nombre de mention portant la mรชme classe selon les annotateurs
def total_agree_disagree_per_label(dataframe, pairs_totals_labels):
new_pairs = []
for t in pairs_totals_labels:
# t[0] : label
# t[1] : total_rows_with_label
agree_res = df[df.nunique(1).eq(1)].eq(t[0]).any(1).sum()
disagree_res = t[1] - agree_res
agree_percent = (agree_res / t[1]) * 100
disagree_percent = (disagree_res / t[1]) * 100
new_pairs.append((t[0], t[1], agree_percent, disagree_percent))
return new_pairs
to_pie = total_agree_disagree_per_label(df, totals_annotations_per_labels)
def plot_pies(tasks_to_pie):
my_labels = 'agree', 'disagree'
my_colors = ['#47DBCD', '#F5B14C']
my_explode = (0, 0.1)
counter = 0
fig, axes = pylt.subplots(1, len(tasks_to_pie), figsize=(20, 3))
for t in tasks_to_pie:
tasks = [t[2], t[3]]
axes[counter].pie(tasks, autopct='%1.1f%%', startangle=15, shadow=True, colors=my_colors,
explode=my_explode)
axes[counter].set_title(t[0])
axes[counter].axis('equal')
counter += 1
fig.set_facecolor("white")
fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
# plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
return fig
f = plot_pies(to_pie)
st.subheader("๐ท๏ธ Global Labels Statistics")
st.pyplot(f.figure)
# global project results view
# to st components
def clear_cache():
st.session_state["p_a"] = None
if option == "Global project statistics":
project = sidebar.file_uploader("Project folder that contains curated annotations in XMI 1.1 (.zip format only) : ", on_change=clear_cache)
if project is not None:
if st.session_state["p_a"] is None:
st.session_state["p_a"] = GlobalStatistics(zip_project=project)
if st.session_state["p_a"] is not None:
with st.expander('Details on data'):
col1.metric("Total curated annotations",
f"{st.session_state['p_a'].total_annotations_project} Named entities")
col1.dataframe(st.session_state['p_a'].df_i)
selected_data = col1.selectbox('Select specific data to display bar plot:',
st.session_state['p_a'].documents)
col2.pyplot(st.session_state['p_a'].create_plot(selected_data))
|