File size: 12,376 Bytes
519b419
 
 
 
 
 
8da674b
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f832cf5
 
 
 
 
8da674b
 
 
519b419
 
8da674b
 
519b419
 
 
 
 
8da674b
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f832cf5
 
519b419
 
 
f832cf5
8da674b
 
 
 
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
519b419
 
 
8da674b
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
 
519b419
 
 
 
 
 
f832cf5
519b419
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
519b419
f832cf5
519b419
 
 
 
 
 
f832cf5
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da674b
f832cf5
519b419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python3
# -*- coding:utf-8 -*-



import streamlit as st
from streamlit.components.v1 import html
from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)


TITLE = "NER4ARCHIVES Analytics"

# Set application
st.set_page_config(layout="wide")

# sidebar: meta, inputs etc.
sidebar = st.sidebar
# cols: display results
col1, col2 = st.columns(2)

# description
#sidebar.markdown(f"# ๐Ÿ“ {TITLE}")
sidebar.markdown(f"""
# ๐Ÿ“ {TITLE}

A basic web application to display a dashboard for
analyzing INCEpTION annotation project built in context
of NER4Archives (Inria/Archives nationales).
 
- This tool provides two statistics levels:
    - *Global project statistics*: Analyze named entities in overall curated documents in project;
    - *Inter-Annotator Agreement results*: Analyze results of IAA experiment.  
""")

# Level to analyze
option = sidebar.selectbox('Which statistics level?', ('Inter-Annotator Agreement results', 'Global project statistics'))

# IAA results view
if option == "Inter-Annotator Agreement results":
    annotations = sidebar.file_uploader("Upload IAA annotations (.zip format only): ")
    baseline_text = sidebar.file_uploader("Upload baseline text (.txt format only): ")

    if baseline_text is not None and annotations is not None:
        project_analyzed = IaaStatistics(zip_project=annotations, baseline_text=baseline_text.getvalue())
        baseline_analyzer = project_analyzed.analyze_text()

        col2.markdown(f"""
        ### BASELINE TEXT: {baseline_text.name}

         - sentences:  {baseline_analyzer[0]}
         - words: {baseline_analyzer[1]}
         - characters: {baseline_analyzer[2]}
        """)




        #print(project_analyzed.annotations_per_coders)

        commune_mentions = [l for i,j in project_analyzed.mentions_per_coder.items() for l in j]
        commune_mentions = list(dict.fromkeys(commune_mentions))
        #print(commune_mentions)
        #print(project_analyzed.annotations)
        #print(project_analyzed.labels_per_coder)
        import pandas as pd
        from collections import defaultdict, Counter
        from itertools import combinations
        import seaborn as sn
        import matplotlib as plt
        import matplotlib.pyplot as pylt

        dicts_coders = []
        for coder, annotations in project_analyzed.annotations_per_coders.items():
            nombre_annotations = []
            # print(f'* {coder}')
            for annotation, label in annotations.items():
                nombre_annotations.append(label)
            # print(f"Nombre total d'annotations : {len(nombre_annotations)}")
            dict_coder = dict(Counter(nombre_annotations))
            dicts_coders.append(dict_coder)
            # print(f'==========================')

        labels = [label for label in dicts_coders[0]]

        from n4a_analytics_lib.metrics_utils import interpret_kappa, fleiss_kappa_function, cohen_kappa_function
        df = pd.DataFrame(project_analyzed.annotations_per_coders, index=commune_mentions)

        for ann in project_analyzed.annotators:
            df[ann] = 'None'
            for mention, value in project_analyzed.annotations_per_coders[ann].items():
                df.loc[mention, ann] = value

        total_annotations = len(df)

        # print(f'* Total des annotations : {total_annotations}')

        df_n = df.apply(pd.Series.value_counts, 1).fillna(0).astype(int)
        matrix = df_n.values

        pairs = list(combinations(project_analyzed.annotations_per_coders, 2))

        # Display in app
        #cont_kappa = st.container()
        st.title("Inter-Annotator Agreement (IAA) results")
        #tab1, tab2, tab3, tab4, tab5 = st.tabs(
        #    ["๐Ÿ“ˆ IAA metrics", "๐Ÿ—ƒ IAA Metrics Legend", "โœ”๏ธ Agree annotations", "โŒ Disagree annotations",
        #     "๐Ÿท๏ธ Global Labels Statistics"])
        st.markdown("## ๐Ÿ“ˆ IAA metrics")
        col1_kappa, col2_kappa = st.columns(2)
        col1_kappa.subheader("Fleiss Kappa (global score for group):")


        col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
        col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
        # tab1.dataframe(df)
        data = []
        for coder_1, coder_2 in pairs:
            cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
            data.append(((coder_1, coder_2), cohen_function))
            col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
            # print(f"* {coder_1} <> {coder_2} : {cohen_function}")

        intermediary = defaultdict(Counter)
        for (src, tgt), count in data:
            intermediary[src][tgt] = count

        letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))

        confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
        import numpy as np

        df_cm = pd.DataFrame(confusion_matrix, letters, letters)
        mask = df_cm.values == 0
        sn.set(font_scale=0.7)  # for label size
        colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
        width = st.slider("matrix width", 1, 10, 14)
        height = st.slider("matrix height", 1, 10, 4)
        fig, ax = pylt.subplots(figsize=(width, height))
        sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax)  # font size
        # plt.show()
        st.pyplot(ax.figure)
        col2_kappa.markdown("""
        <div>
        <div id="legend" style="right: 70em;">
        <h3>๐Ÿ—ƒ IAA Metrics Legend</h3>
        <table>
        <thead>
        <tr>
        <th
        colspan="2"> Kappa
        interpretation
        legend </th>
                   </tr>
                       </thead>
                           <tbody>
                           <tr>
                           <td> Kappa
        score(k) </td>
                     <td>Agreement</td>
                                          </tr>
                                              <tr
        style = "background-color: #e74c3c;">
                <td> k < 0 </td>
                                 <td> Less
        chance
        agreement </td>
                      </tr>
                          <tr
        style = "background-color: #f39c12;">
                <td> 0.01 < k < 0.20 </td>
                                           <td> Slight
        agreement </td>
                      </tr>
                          <tr
        style = "background-color: #f4d03f;">
                <td> 0.21 < k < 0.40 </td>
                                           <td> Fair
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #5dade2;">
                <td> 0.41 < k < 0.60 </td>
                                           <td> Moderate
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #58d68d;">
                <td> 0.61 < k < 0.80 </td>
                                           <td> Substantial
        agreement </td>
                      </tr>
                          <tr
        style = "background-color:  #28b463;">
                <td> 0.81 < k < 0.99 </td>
                                           <td> Almost
        perfect
        agreement </td>
                      </tr>
                          </tbody>
                              </table></div></div>"""

        , unsafe_allow_html = True)


        ## commune
        @st.cache
        def convert_df(df_ex):
            return df_ex.to_csv(encoding="utf-8").encode('utf-8')


        ## Agree part

        columns_to_compare = project_analyzed.annotators


        def check_all_equal(iterator):
            return len(set(iterator)) <= 1


        df_agree = df[df[columns_to_compare].apply(lambda row: check_all_equal(row), axis=1)]
        total_unanime = len(df_agree)

        csv_agree = convert_df(df_agree)

        st.subheader("โœ”๏ธ Agree annotations")
        st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
        st.download_button(
            "Press to Download CSV",
            csv_agree,
            "csv_annotators_agree.csv",
            "text/csv",
            key='download-csv-1'
        )
        st.dataframe(df_agree)


        ## Disagree part

        def check_all_not_equal(iterator):
            return len(set(iterator)) > 1


        df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
        total_desaccord = len(df_disagree)
        csv_disagree = convert_df(df_disagree)
        st.subheader("โŒ Disagree annotations")
        st.markdown(
            f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
        st.download_button(
            "Press to Download CSV",
            csv_disagree,
            "csv_annotators_disagree.csv",
            "text/csv",
            key='download-csv-2'
        )
        st.dataframe(df_disagree)


        ## alignement chart labels
        def count_total_annotations_label(dataframe, labels):
            pairs = []
            for label in labels:
                total = dataframe.astype(object).eq(label).any(1).sum()
                pairs.append((label, total))
            return pairs


        totals_annotations_per_labels = count_total_annotations_label(df, labels)


        # Rรฉcupรฉrer le nombre de mention portant la mรชme classe selon les annotateurs

        def total_agree_disagree_per_label(dataframe, pairs_totals_labels):
            new_pairs = []
            for t in pairs_totals_labels:
                # t[0] : label
                # t[1] : total_rows_with_label
                agree_res = df[df.nunique(1).eq(1)].eq(t[0]).any(1).sum()
                disagree_res = t[1] - agree_res
                agree_percent = (agree_res / t[1]) * 100
                disagree_percent = (disagree_res / t[1]) * 100
                new_pairs.append((t[0], t[1], agree_percent, disagree_percent))
            return new_pairs

        to_pie = total_agree_disagree_per_label(df, totals_annotations_per_labels)


        def plot_pies(tasks_to_pie):
         my_labels = 'agree', 'disagree'
         my_colors = ['#47DBCD', '#F5B14C']
         my_explode = (0, 0.1)
         counter = 0
         fig, axes = pylt.subplots(1, len(tasks_to_pie), figsize=(20, 3))
         for t in tasks_to_pie:
             tasks = [t[2], t[3]]
             axes[counter].pie(tasks, autopct='%1.1f%%', startangle=15, shadow=True, colors=my_colors,
                               explode=my_explode)
             axes[counter].set_title(t[0])
             axes[counter].axis('equal')
             counter += 1
         fig.set_facecolor("white")
         fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
         # plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
         return fig

        f = plot_pies(to_pie)
        st.subheader("๐Ÿท๏ธ Global Labels Statistics")
        st.pyplot(f.figure)

# global project results view


# to st components
def clear_cache():
    st.session_state["p_a"] = None

if option == "Global project statistics":
    project = sidebar.file_uploader("Project folder that contains curated annotations in XMI 1.1 (.zip format only) : ", on_change=clear_cache)
    if project is not None:
        if st.session_state["p_a"] is None:
            st.session_state["p_a"] = GlobalStatistics(zip_project=project)
        if st.session_state["p_a"] is not None:
            with st.expander('Details on data'):
                col1.metric("Total curated annotations",
                            f"{st.session_state['p_a'].total_annotations_project} Named entities")
                col1.dataframe(st.session_state['p_a'].df_i)
                selected_data = col1.selectbox('Select specific data to display bar plot:',
                                               st.session_state['p_a'].documents)
                col2.pyplot(st.session_state['p_a'].create_plot(selected_data))