nesticot commited on
Commit
7d412d5
·
1 Parent(s): 11e3993

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -9
app.py CHANGED
@@ -326,6 +326,7 @@ app_ui = ui.page_fluid(
326
  ui.input_date_range("scorer_date_id", "Streamer Stats Date Range",start = max(datetime.today().date()- timedelta(days=21),pd.to_datetime('2023-10-10')), end = datetime.today().date()),
327
  ui.input_numeric('min_games','Min. Games (Streamers)',value=3),
328
  ui.input_numeric('max_head','Number of Rows (Streamers)',value=15),
 
329
  ui.output_table("result"),width=3),
330
 
331
 
@@ -348,11 +349,11 @@ app_ui = ui.page_fluid(
348
  ui.tags.h3(""),
349
  ui.div({"style": "font-size:2.7em;"},ui.output_text("txt_title_streamers")),
350
  ui.tags.h5("Created By: @TJStats, Data: NHL, Natural Stat Trick, Yahoo Fantasy"),
351
- ui.div({"style": "font-size:2em;"},'Forwards Scoring Streamer Targets (<50% Rostered)'),
352
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_f")),
353
  ui.output_table("scorer_streamers_f"),
354
  ui.tags.h3(""),
355
- ui.div({"style": "font-size:2em;"},'Defence Scoring Streamer Targets (<50% Rostered)'),
356
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_d")),
357
  ui.output_table("scorer_streamers_d"),
358
 
@@ -362,11 +363,11 @@ app_ui = ui.page_fluid(
362
  ui.tags.h3(""),
363
  ui.div({"style": "font-size:2.7em;"},ui.output_text("txt_title_streamers_bang")),
364
  ui.tags.h5("Created By: @TJStats, Data: NHL, Natural Stat Trick, Yahoo Fantasy"),
365
- ui.div({"style": "font-size:2em;"},'Forwards Bangers Streamer Targets (<50% Rostered)'),
366
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_f_bang")),
367
  ui.output_table("banger_streamers_f"),
368
  ui.tags.h3(""),
369
- ui.div({"style": "font-size:2em;"},'Defence Bangers Streamer Targets (<50% Rostered)'),
370
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_d_bang")),
371
  ui.output_table("banger_streamers_d"),
372
 
@@ -478,12 +479,32 @@ def server(input, output, session):
478
  return f'Fantasy Hockey Scorers Streamers - Week {input.week_id()}'
479
  else:
480
  return f'Fantasy Hockey Scorers Streamers'
481
-
482
 
483
  @output
484
  @render.text
485
  def txt_title_streamers_dates_f():
486
  return f'2023-24 Season - {input.scorer_date_id()[0]} to {input.scorer_date_id()[1]} (min. {input.min_games()} GP)'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
 
488
  @output
489
  @render.text
@@ -784,7 +805,7 @@ def server(input, output, session):
784
  df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
785
  df_dated_score_group = df_dated_score_group.reset_index()
786
  df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
787
- df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
788
  df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
789
  df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
790
  'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
@@ -922,7 +943,7 @@ def server(input, output, session):
922
  df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
923
  df_dated_score_group = df_dated_score_group.reset_index()
924
  df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
925
- df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
926
  df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
927
  df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
928
  'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
@@ -1059,7 +1080,7 @@ def server(input, output, session):
1059
  #df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
1060
  df_dated_bangers_group = df_dated_bangers_group.reset_index()
1061
  df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
1062
- df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
1063
  df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
1064
  df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
1065
  'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)
@@ -1199,7 +1220,7 @@ def server(input, output, session):
1199
  #df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
1200
  df_dated_bangers_group = df_dated_bangers_group.reset_index()
1201
  df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
1202
- df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
1203
  df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
1204
  df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
1205
  'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)
 
326
  ui.input_date_range("scorer_date_id", "Streamer Stats Date Range",start = max(datetime.today().date()- timedelta(days=21),pd.to_datetime('2023-10-10')), end = datetime.today().date()),
327
  ui.input_numeric('min_games','Min. Games (Streamers)',value=3),
328
  ui.input_numeric('max_head','Number of Rows (Streamers)',value=15),
329
+ ui.input_numeric('roster_p','Max Roster Percent% (Streamers)',value=50),
330
  ui.output_table("result"),width=3),
331
 
332
 
 
349
  ui.tags.h3(""),
350
  ui.div({"style": "font-size:2.7em;"},ui.output_text("txt_title_streamers")),
351
  ui.tags.h5("Created By: @TJStats, Data: NHL, Natural Stat Trick, Yahoo Fantasy"),
352
+ ui.div({"style": "font-size:2em;"},ui.output_text("txt_title_streamers_roster_f")),
353
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_f")),
354
  ui.output_table("scorer_streamers_f"),
355
  ui.tags.h3(""),
356
+ ui.div({"style": "font-size:2em;"},ui.output_text("txt_title_streamers_roster_d")),
357
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_d")),
358
  ui.output_table("scorer_streamers_d"),
359
 
 
363
  ui.tags.h3(""),
364
  ui.div({"style": "font-size:2.7em;"},ui.output_text("txt_title_streamers_bang")),
365
  ui.tags.h5("Created By: @TJStats, Data: NHL, Natural Stat Trick, Yahoo Fantasy"),
366
+ ui.div({"style": "font-size:2em;"},ui.output_text("txt_title_streamers_roster_f_bang")),
367
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_f_bang")),
368
  ui.output_table("banger_streamers_f"),
369
  ui.tags.h3(""),
370
+ ui.div({"style": "font-size:2em;"},ui.output_text("txt_title_streamers_roster_d_bang")),
371
  ui.div({"style": "font-size:1em;"},ui.output_text("txt_title_streamers_dates_d_bang")),
372
  ui.output_table("banger_streamers_d"),
373
 
 
479
  return f'Fantasy Hockey Scorers Streamers - Week {input.week_id()}'
480
  else:
481
  return f'Fantasy Hockey Scorers Streamers'
 
482
 
483
  @output
484
  @render.text
485
  def txt_title_streamers_dates_f():
486
  return f'2023-24 Season - {input.scorer_date_id()[0]} to {input.scorer_date_id()[1]} (min. {input.min_games()} GP)'
487
+
488
+ @output
489
+ @render.text
490
+ def txt_title_streamers_roster_f():
491
+ return f'Forwards Bangers Streamer Targets (<{input.roster_p()/100:.0%} Rostered)'
492
+
493
+ @output
494
+ @render.text
495
+ def txt_title_streamers_roster_d():
496
+ return f'Forwards Bangers Streamer Targets (<{input.roster_p()/100:.0%} Rostered)'
497
+
498
+ @output
499
+ @render.text
500
+ def txt_title_streamers_roster_f_bang():
501
+ return f'Forwards Bangers Streamer Targets (<{input.roster_p()/100:.0%} Rostered)'
502
+
503
+
504
+ @output
505
+ @render.text
506
+ def txt_title_streamers_roster_d_bang():
507
+ return f'Forwards Bangers Streamer Targets (<{input.roster_p()/100:.0%} Rostered)'
508
 
509
  @output
510
  @render.text
 
805
  df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
806
  df_dated_score_group = df_dated_score_group.reset_index()
807
  df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
808
+ df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= input.roster_p()/100 )]
809
  df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
810
  df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
811
  'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
 
943
  df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
944
  df_dated_score_group = df_dated_score_group.reset_index()
945
  df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
946
+ df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= input.roster_p()/100 )]
947
  df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
948
  df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
949
  'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
 
1080
  #df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
1081
  df_dated_bangers_group = df_dated_bangers_group.reset_index()
1082
  df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
1083
+ df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= input.roster_p()/100 )]
1084
  df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
1085
  df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
1086
  'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)
 
1220
  #df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
1221
  df_dated_bangers_group = df_dated_bangers_group.reset_index()
1222
  df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
1223
+ df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= input.roster_p()/100 )]
1224
  df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
1225
  df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
1226
  'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)