stoke / app.py
npops's picture
path
0cd6d05
raw
history blame
16.3 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
import numpy as np
import os
import urllib.request
import zipfile
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim) # Input layer to hidden layer
self.fc3 = torch.nn.Linear(hidden_dim, output_dim) # Hidden layer to output layer
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
"""
Map a value between 0 and 1 to a CSS color using a Python colormap.
Args:
value (float): A value between 0 and 1.
colormap_name (str): The name of the colormap to use (e.g., 'viridis').
Returns:
str: A CSS color string in the form 'rgb(r, g, b)'.
"""
# Ensure the value is within the range [0, 1]
value = np.clip(value, 0.0, 1.0)
# Get the colormap
colormap = plt.get_cmap(colormap_name)
# Map the value to a color
rgba_color = colormap(value)
# Convert the RGBA color to CSS format
css_color = to_hex(rgba_color)
return css_color + "88"
@st.cache_resource
def get_model_and_tokenizer(name):
# Load pre-trained model and tokenizer
tok = AutoTokenizer.from_pretrained(name)
model = AutoModelForCausalLM.from_pretrained(name)
return model, tok
@st.cache_resource
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
classifier_token = None
#print(config)
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device))
print(sum(p.numel() for p in classifier_span.parameters()), sum(p.numel() for p in classifier_token.parameters()))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def get_available_models():
available_models = []
for model_name in ["gpt2", "gpt2-xl"]:
if os.path.isfile(f"checkpoints/{model_name}/config.json"):
available_models.append(model_name)
return available_models
def get_available_datasets(model_name):
available_datasets = []
config_path = f"checkpoints/{model_name}/config.json"
if os.path.isfile(config_path):
with open(config_path, "r") as f:
config = json.load(f)
# Assuming datasets are keys in config.json
available_datasets = list(config.keys())
return available_datasets
def download_and_extract_zip(url, extract_dir):
# Determine the parent directory
parent_dir = os.path.split(os.path.dirname(extract_dir))[-2]
print(parent_dir)
# Download the zip file to the parent directory
zip_file_path = os.path.join(parent_dir, "data.zip")
urllib.request.urlretrieve(url, zip_file_path)
# Extract the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(parent_dir)
# Remove the zip file
os.remove(zip_file_path)
def find_datasets_and_model_ids(root_dir):
datasets = {}
# Check if the root directory exists
if not os.path.exists(root_dir):
# If root directory doesn't exist, download a zip file and unpack it
print("Root directory doesn't exist. Downloading zip file...")
url = "https://drive.usercontent.google.com/download?id=1dHjH_J0zuPS-SDVrh49tMpIx5ramu_hc&export=download&authuser=0&confirm=t&uuid=4efcec77-571c-44c7-82f1-f39ddae50eb5&at=APZUnTW8g-Ab4PUT0-B9mh4jQSc-%3A1711040271924" # Replace with your actual download URL
download_and_extract_zip(url, root_dir)
print("Zip file downloaded and unpacked successfully.")
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
# Main content
st.title("Playground")
# Sidebar for model and dataset selection
with st.sidebar:
st.subheader("Model and Dataset Selection")
datasets = find_datasets_and_model_ids("data/")
available_models = datasets.keys()
print(datasets)
if available_models:
model_selection = st.selectbox("Select Model", available_models)
else:
st.error("No models available. Please check the file paths.")
# Select dataset based on selected model
available_datasets = datasets[model_selection]
if available_datasets:
dataset_selection = st.selectbox("Select Dataset", available_datasets)
else:
st.error("No datasets available for the selected model.")
# Select dataset based on selected model
available_configs = datasets[model_selection][dataset_selection]
if available_configs:
config_selection = st.selectbox("Select Config", available_configs.keys())
else:
st.error("No configs available for the selected dataset.")
# Load model and streamer based on selections
model, tok = get_model_and_tokenizer(model_selection)
if torch.cuda.is_available():
model.cuda()
classifier_span, classifier_token, label_map = get_classifiers_for_model(model.config.n_head*model.config.n_layer, model.config.n_embd, model.device, datasets[model_selection][dataset_selection][config_selection])
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += "<b><u>"
html_content += "".join(tokenized_text[span_start:span_end])
html_content += "</u></b> "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
css = """
<style>
.highlight {
display: inline;
}
.highlight::after {
background-color: var(data-color);
}
.spanhighlight {
padding: 2px 5px;
border-radius: 5px;
}
.tooltip {
position: relative;
display: inline-block;
}
.tooltip::after {
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
display: none;
position: absolute;
background-color: #333;
color: #fff;
padding: 5px;
border-radius: 5px;
bottom: 100%; /* Position it above the element */
left: 50%;
transform: translateX(-50%);
width: auto;
min-width: 120px;
margin: 0 auto;
text-align: center;
}
.tooltip:hover::after {
display: block; /* Show the tooltip on hover */
}
.small-text {
padding: 2px 5px;
background-color: white;
border-radius: 5px;
font-size: xx-small;
margin-left: 0.5em;
vertical-align: 0.2em;
font-weight: bold;
color: grey;
}
</style>"""
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append("Ġ")
span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
# Define function to generate text based on input
def generate_text(generation_kwargs, output_field):
# Function to generate text in a separate thread
def generate_async():
model.generate(**generation_kwargs)
# Start text generation in a separate thread
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
else:
text_tokenwise += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "")
output_field.empty()
output = f"{css}"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
output += "<details><summary>Show tokenwise classification</summary>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
if removed_spans != "":
output += f"<br><br><i>({removed_spans})</i>"
output += "</details>"
output_field.write(output, unsafe_allow_html=True)
# Input field
input_text = st.text_area("Enter prompt for completion", "")
# Sidebar for customizing generation parameters
with st.sidebar:
st.subheader("Generation Parameters")
max_new_tokens = st.slider("Max New Tokens", min_value=1, max_value=100, value=30)
repetition_penalty = st.slider("Repetition Penalty", min_value=1.0, max_value=2.0, value=1.2)
do_sample = st.checkbox("Do Sample", value=True)
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0)
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.3)
top_k = st.slider("Top-k", min_value=10, max_value=100, value=50)
typical_p = st.slider("Typical P", min_value=0.1, max_value=1.0, value=1.0)
# Button to generate text
if st.button("Generate"):
if input_text:
output_field = st.empty()
inputs = tok([" " + input_text], return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty, temperature=temperature,
top_p=top_p, top_k=top_k, do_sample=do_sample, typical_p=typical_p)
generate_text(generation_kwargs, output_field)
else:
st.warning("Please enter some text first.")