nielklug's picture
init
6ed21b9
import argparse
import functools
import itertools
import os.path
import time
import torch
import torch.nn as nn
import numpy as np
import evaluate
import treebanks
from benepar import Parser, InputSentence
from benepar.partitioned_transformer import PartitionedMultiHeadAttention
import json
def format_elapsed(start_time):
elapsed_time = int(time.time() - start_time)
minutes, seconds = divmod(elapsed_time, 60)
hours, minutes = divmod(minutes, 60)
days, hours = divmod(hours, 24)
elapsed_string = "{}h{:02}m{:02}s".format(hours, minutes, seconds)
if days > 0:
elapsed_string = "{}d{}".format(days, elapsed_string)
return elapsed_string
def inputs_from_treebank(treebank, predict_tags):
return [
InputSentence(
words=example.words,
space_after=example.space_after,
tags=None if predict_tags else [tag for _, tag in example.pos()],
escaped_words=list(example.leaves()),
)
for example in treebank
]
def run_test(args):
print("Loading test trees from {}...".format(args.test_path))
test_treebank = treebanks.load_trees(
args.test_path, args.test_path_text, args.text_processing
)
print("Loaded {:,} test examples.".format(len(test_treebank)))
print("Loading model from {}...".format(args.model_path))
parser = Parser(args.model_path, batch_size=args.batch_size)
print("Parsing test sentences...")
start_time = time.time()
if args.output_path == "-":
output_file = sys.stdout
elif args.output_path:
output_file = open(args.output_path, "w")
else:
output_file = None
test_predicted = []
for predicted_tree in parser.parse_sents(
inputs_from_treebank(test_treebank, predict_tags=args.predict_tags)
):
test_predicted.append(predicted_tree)
if output_file is not None:
print(tree.pformat(margin=1e100), file=output_file)
test_fscore = evaluate.evalb(args.evalb_dir, test_treebank.trees, test_predicted)
print(
"test-fscore {} "
"test-elapsed {}".format(
test_fscore,
format_elapsed(start_time),
)
)
def get_compressed_state_dict(model):
state_dict = model.state_dict()
for module_name, module in model.named_modules():
if not isinstance(
module, (nn.Linear, nn.Embedding, PartitionedMultiHeadAttention)
):
continue
elif "token_type_embeddings" in module_name:
continue
elif "position_embeddings" in module_name:
continue
elif "f_tag" in module_name or "f_label" in module_name:
continue
elif "project_pretrained" in module_name:
continue
if isinstance(module, PartitionedMultiHeadAttention):
weight_names = [
module_name + "." + param
for param in ("w_qkv_c", "w_qkv_p", "w_o_c", "w_o_p")
]
else:
weight_names = [module_name + ".weight"]
for weight_name in weight_names:
weight = state_dict[weight_name]
if weight.shape.numel() <= 2048:
continue
print(weight_name, ":", weight.shape.numel(), "parameters")
if isinstance(module, nn.Embedding) or "word_embeddings" in module_name or "shared.weight" in weight_name:
is_embedding = True
else:
is_embedding = False
num_steps = 64
use_histogram = True
if "pooler.dense.weight" in weight_name:
weight.data.zero_()
continue
elif "pretrained_model" in weight_name and not is_embedding:
num_steps = 128
if not model.retokenizer.is_t5:
use_histogram = False
elif isinstance(module, PartitionedMultiHeadAttention):
num_steps = 128
if use_histogram:
observer = torch.quantization.HistogramObserver()
observer.dst_nbins = num_steps
observer(weight)
scale, zero_point = observer.calculate_qparams()
scale = scale.item()
zero_point = zero_point.item()
cluster_centers = (
scale * (np.arange(0, 256, 256 / num_steps) - zero_point)[:, None]
)
cluster_centers = np.asarray(cluster_centers, dtype=np.float32)
else:
weight_np = weight.cpu().detach().numpy()
min_val = weight_np.min()
max_val = weight_np.max()
bucket_width = (max_val - min_val) / num_steps
cluster_centers = (
min_val
+ (np.arange(num_steps, dtype=np.float32) + 0.5) * bucket_width
)
cluster_centers = cluster_centers.reshape((-1, 1))
codebook = torch.tensor(
cluster_centers, dtype=weight.dtype, device=weight.device
)
distances = weight.data.reshape((-1, 1)) - codebook.t()
codes = torch.argmin(distances ** 2, dim=-1)
weight_rounded = codebook[codes].reshape(weight.shape)
weight.data.copy_(weight_rounded)
return state_dict
def run_export(args):
if args.test_path is not None:
print("Loading test trees from {}...".format(args.test_path))
test_treebank = treebanks.load_trees(
args.test_path, args.test_path_text, args.text_processing
)
print("Loaded {:,} test examples.".format(len(test_treebank)))
else:
test_treebank = None
print("Loading model from {}...".format(args.model_path))
parser = Parser(args.model_path, batch_size=args.batch_size)
model = parser._parser
if model.pretrained_model is None:
raise ValueError(
"Exporting is only defined when using a pre-trained transformer "
"encoder. For CharLSTM-based model, just distribute the pytorch "
"checkpoint directly. You may manually delete the 'optimizer' "
"field to reduce file size by discarding the optimizer state."
)
if test_treebank is not None:
print("Parsing test sentences (predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=True)
test_predicted = list(parser.parse_sents(test_inputs))
test_fscore = evaluate.evalb(args.evalb_dir, test_treebank.trees, test_predicted)
test_elapsed = format_elapsed(start_time)
print("test-fscore {} test-elapsed {}".format(test_fscore, test_elapsed))
print("Parsing test sentences (not predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=False)
notags_test_predicted = list(parser.parse_sents(test_inputs))
notags_test_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, notags_test_predicted
)
notags_test_elapsed = format_elapsed(start_time)
print(
"test-fscore {} test-elapsed {}".format(notags_test_fscore, notags_test_elapsed)
)
print("Exporting tokenizer...")
model.retokenizer.tokenizer.save_pretrained(args.output_dir)
print("Exporting config...")
config = model.pretrained_model.config
config.benepar = model.config
config.save_pretrained(args.output_dir)
if args.compress:
print("Compressing weights...")
state_dict = get_compressed_state_dict(model.cpu())
print("Saving weights...")
else:
print("Exporting weights...")
state_dict = model.cpu().state_dict()
torch.save(state_dict, os.path.join(args.output_dir, "benepar_model.bin"))
del model, parser, state_dict
print("Loading exported model from {}...".format(args.output_dir))
exported_parser = Parser(args.output_dir, batch_size=args.batch_size)
if test_treebank is None:
print()
print("Export complete.")
print("Did not verify model accuracy because no treebank was provided.")
return
print("Parsing test sentences (predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=True)
exported_predicted = list(exported_parser.parse_sents(test_inputs))
exported_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, exported_predicted
)
exported_elapsed = format_elapsed(start_time)
print(
"exported-fscore {} exported-elapsed {}".format(
exported_fscore, exported_elapsed
)
)
print("Parsing test sentences (not predicting tags)...")
start_time = time.time()
test_inputs = inputs_from_treebank(test_treebank, predict_tags=False)
notags_exported_predicted = list(exported_parser.parse_sents(test_inputs))
notags_exported_fscore = evaluate.evalb(
args.evalb_dir, test_treebank.trees, notags_exported_predicted
)
notags_exported_elapsed = format_elapsed(start_time)
print(
"exported-fscore {} exported-elapsed {}".format(
notags_exported_fscore, notags_exported_elapsed
)
)
print()
print("Export and verification complete.")
fscore_delta = evaluate.FScore(
recall=notags_exported_fscore.recall - notags_test_fscore.recall,
precision=notags_exported_fscore.precision - notags_test_fscore.precision,
fscore=notags_exported_fscore.fscore - notags_test_fscore.fscore,
complete_match=(
notags_exported_fscore.complete_match - notags_test_fscore.complete_match
),
tagging_accuracy=(
exported_fscore.tagging_accuracy - test_fscore.tagging_accuracy
),
)
print("delta-fscore {}".format(fscore_delta))
def main():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()
subparser = subparsers.add_parser("test")
subparser.set_defaults(callback=run_test)
subparser.add_argument("--model-path", type=str, required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--test-path", type=str, required=True)
subparser.add_argument("--test-path-text", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--predict-tags", action="store_true")
subparser.add_argument("--output-path", default="")
subparser.add_argument("--batch-size", type=int, default=8)
subparser = subparsers.add_parser("export")
subparser.set_defaults(callback=run_export)
subparser.add_argument("--model-path", type=str, required=True)
subparser.add_argument("--output-dir", type=str, required=True)
subparser.add_argument("--evalb-dir", default="EVALB/")
subparser.add_argument("--test-path", type=str, default=None)
subparser.add_argument("--test-path-text", type=str)
subparser.add_argument("--text-processing", default="default")
subparser.add_argument("--compress", action="store_true")
subparser.add_argument("--batch-size", type=int, default=8)
args = parser.parse_args()
args.callback(args)
if __name__ == "__main__":
main()