File size: 2,358 Bytes
994b44c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import re
from PIL import Image
import gradio as gr

import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel

processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def process_document(image):
    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values
    
    # prepare decoder inputs
    task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
    question = "When is the coffee break?"
    prompt = task_prompt.replace("{user_input}", question)
    decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )
    
    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    
    return processor.token2json(sequence)

image = Image.open("./example_1.png")
image.save("example_1.png")

demo = gr.Interface(
    fn=process_document,
    inputs= gr.inputs.Image(type="pil"),
    outputs="json",
    title=f"Interactive demo: Donut 🍩 for DocVQA",
    description="""This model is fine-tuned on the DocVQA dataset. <br>
Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/donut
Notebooks: https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut

More details are available at:
- Paper: https://arxiv.org/abs/2111.15664
- Original repository: https://github.com/clovaai/donut""",
    examples=[["example_1.png"]],
    cache_examples=False,
)
demo.launch()