Spaces:
Runtime error
Runtime error
File size: 43,916 Bytes
47a776e 6f7b9d9 47a776e a88fc03 6f7b9d9 ffa453a 47a776e a88fc03 6f7b9d9 47a776e e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 47a776e 6f7b9d9 47a776e 6f7b9d9 a88fc03 bc26371 6f7b9d9 47a776e 37477f9 47a776e 37477f9 6f7b9d9 37477f9 6f7b9d9 37477f9 6f7b9d9 37477f9 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 6f7b9d9 e7d6236 37477f9 5f96986 37477f9 e7d6236 d715357 6665ca1 d715357 37477f9 d715357 37477f9 d715357 37477f9 6665ca1 d715357 37477f9 d715357 37477f9 d715357 6665ca1 37477f9 6665ca1 37477f9 e7d6236 37477f9 e7d6236 37477f9 d715357 37477f9 6665ca1 37477f9 d715357 37477f9 d715357 37477f9 47a776e d715357 37477f9 d715357 6665ca1 37477f9 c650a86 37477f9 c650a86 37477f9 c650a86 47a776e c650a86 71f7801 c650a86 71f7801 c650a86 71f7801 c650a86 47a776e c650a86 6f7b9d9 c650a86 47a776e c650a86 47a776e c650a86 47a776e c650a86 47a776e c650a86 47a776e c650a86 7ecfcf2 e7d6236 9b8a800 47a776e 7ecfcf2 47a776e 6f7b9d9 47a776e 6665ca1 47a776e ba2d700 47a776e ba2d700 9b8a800 6665ca1 6f7b9d9 e7d6236 ba2d700 e7d6236 47a776e 6f7b9d9 47a776e 9b8a800 47a776e 9b8a800 47a776e 6665ca1 47a776e 6665ca1 47a776e 6665ca1 e7d6236 9b8a800 6665ca1 47a776e e7d6236 47a776e e7d6236 ba2d700 6665ca1 47a776e ba2d700 47a776e ba2d700 47a776e 6f7b9d9 47a776e ba2d700 47a776e e7d6236 ba2d700 47a776e e7d6236 ba2d700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 |
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import streamlit as st
import torch
import torch.nn.functional as F
import re
import requests
from embedding_processor import SentenceTransformerRetriever, process_data
import pickle
import logging
import sys
from llama_cpp import Llama
from tqdm import tqdm
# At the top of your script
os.environ['LLAMA_CPP_THREADS'] = '4'
os.environ['LLAMA_CPP_BATCH_SIZE'] = '512'
os.environ['LLAMA_CPP_MODEL_PATH'] = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
# Set page config first
st.set_page_config(
page_title="The Sport Chatbot",
page_icon="π",
layout="wide"
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
# Add this at the top level of your script, after imports
@st.cache_resource
def get_llama_model():
model_path = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
os.makedirs(os.path.dirname(model_path), exist_ok=True)
if not os.path.exists(model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, model_path)
llm_config = {
"model_path": model_path,
"n_ctx": 2048,
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": False,
"use_mlock": True
}
return Llama(**llm_config)
def download_file_with_progress(url: str, filename: str):
"""Download a file with progress bar using requests"""
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
with open(filename, 'wb') as file, tqdm(
desc=filename,
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as progress_bar:
for data in response.iter_content(chunk_size=1024):
size = file.write(data)
progress_bar.update(size)
@st.cache_data
def load_from_drive(file_id: str):
"""Load pickle file directly from Google Drive"""
try:
url = f"https://drive.google.com/uc?id={file_id}&export=download"
session = requests.Session()
response = session.get(url, stream=True)
for key, value in response.cookies.items():
if key.startswith('download_warning'):
url = f"{url}&confirm={value}"
response = session.get(url, stream=True)
break
content = response.content
print(f"Successfully downloaded {len(content)} bytes")
return pickle.loads(content)
except Exception as e:
print(f"Detailed error: {str(e)}")
st.error(f"Error loading file from Drive: {str(e)}")
return None
# @st.cache_resource(show_spinner=False)
# def load_llama_model():
# """Load Llama model with caching"""
# try:
# model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
# if not os.path.exists(model_path):
# st.info("Downloading model... This may take a while.")
# direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
# download_file_with_progress(direct_url, model_path)
# llm_config = {
# "model_path": model_path,
# "n_ctx": 2048,
# "n_threads": 4,
# "n_batch": 512,
# "n_gpu_layers": 0,
# "verbose": False
# }
# model = Llama(**llm_config)
# st.success("Model loaded successfully!")
# return model
# except Exception as e:
# st.error(f"Error loading model: {str(e)}")
# raise
@st.cache_resource(show_spinner=False)
def load_llama_model():
"""Load Llama model with caching"""
try:
model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
if not os.path.exists(model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, model_path)
if not os.path.exists(model_path):
raise FileNotFoundError("Model file not found after download attempt")
if os.path.getsize(model_path) < 1000000: # Less than 1MB
raise ValueError("Model file is too small, likely corrupted")
llm_config = {
"model_path": model_path,
"n_ctx": 2048,
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": True # Enable verbose mode for debugging
}
logging.info("Initializing Llama model...")
model = Llama(**llm_config)
# Test the model
logging.info("Testing model...")
test_response = model("Test", max_tokens=10)
if not test_response:
raise RuntimeError("Model test failed")
logging.info("Model loaded and tested successfully")
st.success("Model loaded successfully!")
return model
except Exception as e:
logging.error(f"Error loading model: {str(e)}")
logging.error("Full error details: ", exc_info=True)
raise
def check_environment():
"""Check if the environment is properly set up"""
try:
import torch
import sentence_transformers
return True
except ImportError as e:
st.error(f"Missing required package: {str(e)}")
st.stop()
return False
class RAGPipeline:
def __init__(self, data_folder: str, k: int = 5):
self.data_folder = data_folder
self.k = k
self.retriever = SentenceTransformerRetriever()
self.documents = []
self.device = torch.device("cpu")
# Use the cached model directly
self.llm = get_llama_model()
def preprocess_query(self, query: str) -> str:
"""Clean and prepare the query"""
query = query.lower().strip()
query = re.sub(r'\s+', ' ', query)
return query
### Added on Nov 2, 2024
# def postprocess_response(self, response: str) -> str:
# """Clean up the generated response"""
# response = response.strip()
# response = re.sub(r'\s+', ' ', response)
# response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
# return response
# def query_model(self, prompt: str) -> str:
# """Query the local Llama model"""
# try:
# if self.llm is None:
# raise RuntimeError("Model not initialized")
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "\n\n"]
# )
# if response and 'choices' in response and len(response['choices']) > 0:
# text = response['choices'][0].get('text', '').strip()
# return text
# else:
# raise ValueError("No valid response generated")
# except Exception as e:
# logging.error(f"Error in query_model: {str(e)}")
# raise
# def process_query(self, query: str, placeholder) -> str:
# try:
# # Preprocess query
# query = self.preprocess_query(query)
# # Show retrieval status
# status = placeholder.empty()
# status.write("π Finding relevant information...")
# # Get embeddings and search
# query_embedding = self.retriever.encode([query])
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
# # Update status
# status.write("π Generating response...")
# # Prepare context and prompt
# context = "\n".join(relevant_docs[:3])
# prompt = f"""Context information is below:
# {context}
# Given the context above, please answer the following question:
# {query}
# Guidelines:
# - If you cannot answer based on the context, say so politely
# - Keep the response concise and focused
# - Only include sports-related information
# - No dates or timestamps in the response
# - Use clear, natural language
# Answer:"""
# # Generate response
# response_placeholder = placeholder.empty()
# try:
# response_text = self.query_model(prompt)
# if response_text:
# final_response = self.postprocess_response(response_text)
# response_placeholder.markdown(final_response)
# return final_response
# else:
# message = "No relevant answer found. Please try rephrasing your question."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Generation error: {str(e)}")
# message = "Had some trouble generating the response. Please try again."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Process error: {str(e)}")
# message = "Something went wrong. Please try again with a different question."
# placeholder.warning(message)
# return message
# def process_query(self, query: str, placeholder) -> str:
# try:
# # Preprocess query
# query = self.preprocess_query(query)
# logging.info(f"Processing query: {query}")
# # Show retrieval status
# status = placeholder.empty()
# status.write("π Finding relevant information...")
# # Get embeddings and search
# query_embedding = self.retriever.encode([query])
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
# # Log similarity scores
# for idx, score in zip(indices.tolist(), scores.tolist()):
# logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
# # Update status
# status.write("π Generating response...")
# # Prepare context and prompt
# context = "\n".join(relevant_docs[:3])
# prompt = f"""Context information is below:
# {context}
# Given the context above, please answer the following question:
# {query}
# Guidelines:
# - If you cannot answer based on the context, say so politely
# - Keep the response concise and focused
# - Only include sports-related information
# - No dates or timestamps in the response
# - Use clear, natural language
# Answer:"""
# # Generate response
# response_placeholder = placeholder.empty()
# try:
# # Add logging for model state
# logging.info("Model state check - Is None?: " + str(self.llm is None))
# # Directly use Llama model
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "\n\n"]
# )
# logging.info(f"Raw model response: {response}")
# if response and isinstance(response, dict) and 'choices' in response:
# generated_text = response['choices'][0].get('text', '').strip()
# if generated_text:
# final_response = self.postprocess_response(generated_text)
# response_placeholder.markdown(final_response)
# return final_response
# message = "No relevant answer found. Please try rephrasing your question."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Generation error: {str(e)}")
# logging.error(f"Full error details: ", exc_info=True)
# message = f"Had some trouble generating the response: {str(e)}"
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Process error: {str(e)}")
# logging.error(f"Full error details: ", exc_info=True)
# message = f"Something went wrong: {str(e)}"
# placeholder.warning(message)
# return message
### Added on Nov 2, 2024
def postprocess_response(self, response: str) -> str:
"""Clean up the generated response"""
try:
# Remove datetime patterns and other unwanted content
response = re.sub(r'\d{4}-\d{2}-\d{2}(?:T|\s)\d{2}:\d{2}:\d{2}(?:\.\d+)?(?:Z|[+-]\d{2}:?\d{2})?', '', response)
response = re.sub(r'User \d+:.*?(?=User \d+:|$)', '', response)
response = re.sub(r'\d{2}:\d{2}(?::\d{2})?(?:\s?(?:AM|PM))?', '', response)
response = re.sub(r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}', '', response)
response = re.sub(r'(?m)^User \d+:', '', response)
# Clean up spacing but preserve intentional paragraph breaks
# Replace multiple newlines with two newlines (one paragraph break)
response = re.sub(r'\n\s*\n\s*\n+', '\n\n', response)
# Replace multiple spaces with single space
response = re.sub(r' +', ' ', response)
# Clean up beginning/end
response = response.strip()
return response
except Exception as e:
logging.error(f"Error in postprocess_response: {str(e)}")
return response
def process_query(self, query: str, placeholder) -> str:
try:
# Verify this is the current query being processed
if hasattr(st.session_state, 'current_query') and query != st.session_state.current_query:
logging.warning(f"Skipping outdated query: {query}")
return ""
query = self.preprocess_query(query)
status = placeholder.empty()
status.write("π Finding relevant information...")
query_embedding = self.retriever.encode([query])
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
cleaned_docs = []
for doc in relevant_docs[:3]:
cleaned_text = self.postprocess_response(doc)
if cleaned_text:
cleaned_docs.append(cleaned_text)
status.write("π Generating response...")
prompt = f"""Context information is below:
{' '.join(cleaned_docs)}
Given the context above, please answer the following question:
{query}
Guidelines for your response:
- Structure your response in clear, logical paragraphs
- Start a new paragraph for each new main point or aspect
- If listing multiple items, use separate paragraphs
- Keep each paragraph focused on a single topic or point
- Use natural paragraph breaks where the content shifts focus
- Maintain clear transitions between paragraphs
- If providing statistics or achievements, group them logically
- If describing different aspects (e.g., career, playing style, achievements), use separate paragraphs
- Keep paragraphs concise but complete
- Exclude any dates, timestamps, or user comments
- Focus on factual sports information
- If you cannot answer based on the context, say so politely
Format your response with proper paragraph breaks where appropriate.
Answer:"""
response_placeholder = placeholder.empty()
try:
response_text = self.query_model(prompt)
if response_text:
# Clean up the response while preserving paragraph structure
final_response = self.postprocess_response(response_text)
# Convert cleaned response to markdown with proper paragraph spacing
markdown_response = final_response.replace('\n\n', '\n\n \n\n')
response_placeholder.markdown(markdown_response)
return final_response
else:
message = "No relevant answer found. Please try rephrasing your question."
response_placeholder.warning(message)
return message
except Exception as e:
logging.error(f"Generation error: {str(e)}")
message = "Had some trouble generating the response. Please try again."
response_placeholder.warning(message)
return message
except Exception as e:
logging.error(f"Process error: {str(e)}")
message = "Something went wrong. Please try again with a different question."
placeholder.warning(message)
return message
# def query_model(self, prompt: str) -> str:
# """Query the local Llama model"""
# try:
# if self.llm is None:
# raise RuntimeError("Model not initialized")
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "Context:", "Guidelines:"], # Removed \n\n from stop tokens to allow paragraphs
# repeat_penalty=1.1 # Added to encourage more diverse text
# )
# if response and 'choices' in response and len(response['choices']) > 0:
# text = response['choices'][0].get('text', '').strip()
# return text
# else:
# raise ValueError("No valid response generated")
# except Exception as e:
# logging.error(f"Error in query_model: {str(e)}")
# raise
def query_model(self, prompt: str) -> str:
"""Query the local Llama model"""
try:
if self.llm is None:
raise RuntimeError("Model not initialized")
# Log the prompt for debugging
logging.info(f"Sending prompt to model...")
# Generate response with more explicit parameters
response = self.llm(
prompt,
max_tokens=512, # Maximum length of the response
temperature=0.7, # Slightly increased for more dynamic responses
top_p=0.95, # Nucleus sampling parameter
top_k=50, # Top-k sampling parameter
echo=False, # Don't include prompt in response
stop=["Question:", "Context:", "Guidelines:"], # Stop tokens
repeat_penalty=1.1, # Penalize repetition
presence_penalty=0.5, # Encourage topic diversity
frequency_penalty=0.5 # Discourage word repetition
)
# Log the raw response for debugging
logging.info(f"Raw model response: {response}")
if response and isinstance(response, dict) and 'choices' in response and response['choices']:
generated_text = response['choices'][0].get('text', '').strip()
if generated_text:
logging.info(f"Generated text: {generated_text[:100]}...") # Log first 100 chars
return generated_text
else:
logging.warning("Model returned empty response")
raise ValueError("Empty response from model")
else:
logging.warning(f"Unexpected response format: {response}")
raise ValueError("Invalid response format from model")
except Exception as e:
logging.error(f"Error in query_model: {str(e)}")
logging.error("Full error details: ", exc_info=True)
raise
def initialize_model(self):
"""Initialize the model with proper error handling and verification"""
try:
if not os.path.exists(self.model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, self.model_path)
# Verify file exists and has content
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model file {self.model_path} not found after download attempts")
if os.path.getsize(self.model_path) < 1000000: # Less than 1MB
os.remove(self.model_path)
raise ValueError("Downloaded model file is too small, likely corrupted")
# Updated model configuration
llm_config = {
"model_path": self.model_path,
"n_ctx": 4096, # Increased context window
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": True, # Enable verbose mode for debugging
"use_mlock": False, # Disable memory locking
"last_n_tokens_size": 64, # Token window size for repeat penalty
"seed": -1 # Random seed for reproducibility
}
logging.info("Initializing Llama model...")
self.llm = Llama(**llm_config)
# Test the model
test_response = self.llm(
"Test response",
max_tokens=10,
temperature=0.7,
echo=False
)
if not test_response or 'choices' not in test_response:
raise RuntimeError("Model initialization test failed")
logging.info("Model initialized and tested successfully")
return self.llm
except Exception as e:
logging.error(f"Error initializing model: {str(e)}")
raise
# @st.cache_resource(show_spinner=False)
# def initialize_rag_pipeline():
# """Initialize the RAG pipeline once"""
# try:
# # Create necessary directories
# os.makedirs("ESPN_data", exist_ok=True)
# # Load embeddings from Drive
# drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
# with st.spinner("Loading embeddings from Google Drive..."):
# cache_data = load_from_drive(drive_file_id)
# if cache_data is None:
# st.error("Failed to load embeddings from Google Drive")
# st.stop()
# # Initialize pipeline
# data_folder = "ESPN_data"
# rag = RAGPipeline(data_folder)
# # Store embeddings
# rag.documents = cache_data['documents']
# rag.retriever.store_embeddings(cache_data['embeddings'])
# return rag
# except Exception as e:
# logging.error(f"Pipeline initialization error: {str(e)}")
# st.error(f"Failed to initialize the system: {str(e)}")
# raise
@st.cache_resource(show_spinner=False)
def initialize_rag_pipeline():
"""Initialize the RAG pipeline once"""
try:
data_folder = "ESPN_data"
if not os.path.exists(data_folder):
os.makedirs(data_folder, exist_ok=True)
# Load embeddings first
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
with st.spinner("Loading data..."):
cache_data = load_from_drive(drive_file_id)
if cache_data is None:
st.error("Failed to load embeddings from Google Drive")
st.stop()
# Initialize pipeline
rag = RAGPipeline(data_folder)
# Store embeddings
rag.documents = cache_data['documents']
rag.retriever.store_embeddings(cache_data['embeddings'])
return rag
except Exception as e:
logging.error(f"Pipeline initialization error: {str(e)}")
st.error(f"Failed to initialize the system: {str(e)}")
raise
# def main():
# try:
# # Environment check
# if not check_environment():
# return
# # Improved CSS styling
# st.markdown("""
# <style>
# /* Container styling */
# .block-container {
# padding-top: 2rem;
# padding-bottom: 2rem;
# }
# /* Text input styling */
# .stTextInput > div > div > input {
# width: 100%;
# }
# /* Button styling */
# .stButton > button {
# width: 200px;
# margin: 0 auto;
# display: block;
# background-color: #FF4B4B;
# color: white;
# border-radius: 5px;
# padding: 0.5rem 1rem;
# }
# /* Title styling */
# .main-title {
# text-align: center;
# padding: 1rem 0;
# font-size: 3rem;
# color: #1F1F1F;
# }
# .sub-title {
# text-align: center;
# padding: 0.5rem 0;
# font-size: 1.5rem;
# color: #4F4F4F;
# }
# /* Description styling */
# .description {
# text-align: center;
# color: #666666;
# padding: 0.5rem 0;
# font-size: 1.1rem;
# line-height: 1.6;
# margin-bottom: 1rem;
# }
# /* Answer container styling */
# .stMarkdown {
# max-width: 100%;
# }
# /* Streamlit default overrides */
# .st-emotion-cache-16idsys p {
# font-size: 1.1rem;
# line-height: 1.6;
# }
# /* Container for main content */
# .main-content {
# max-width: 1200px;
# margin: 0 auto;
# padding: 0 1rem;
# }
# </style>
# """, unsafe_allow_html=True)
# # Header section
# st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
# st.markdown("""
# <p class='description'>
# Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
# </p>
# <p class='description'>
# Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
# </p>
# """, unsafe_allow_html=True)
# # Initialize the pipeline
# if 'rag' not in st.session_state:
# with st.spinner("Loading resources..."):
# st.session_state.rag = initialize_rag_pipeline()
# # Create columns for layout
# col1, col2, col3 = st.columns([1, 6, 1])
# with col2:
# # Query input
# query = st.text_input("What would you like to know about sports?")
# if st.button("Get Answer"):
# if query:
# response_placeholder = st.empty()
# try:
# response = st.session_state.rag.process_query(query, response_placeholder)
# logging.info(f"Generated response: {response}")
# except Exception as e:
# logging.error(f"Query processing error: {str(e)}")
# response_placeholder.warning("Unable to process your question. Please try again.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("<br><br>", unsafe_allow_html=True)
# st.markdown("---")
# st.markdown("""
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
# Powered by ESPN Data & Mistral AI π
# </p>
# """, unsafe_allow_html=True)
# except Exception as e:
# logging.error(f"Application error: {str(e)}")
# st.error("An unexpected error occurred. Please check the logs and try again.")
# def main():
# try:
# # Environment check
# if not check_environment():
# return
# # Improved CSS styling
# st.markdown("""
# <style>
# /* Container styling */
# .block-container {
# padding-top: 2rem;
# padding-bottom: 2rem;
# }
# /* Text input styling */
# .stTextInput > div > div > input {
# width: 100%;
# }
# /* Button styling */
# .stButton > button {
# width: 200px;
# margin: 0 auto;
# display: block;
# background-color: #FF4B4B;
# color: white;
# border-radius: 5px;
# padding: 0.5rem 1rem;
# }
# /* Title styling */
# .main-title {
# text-align: center;
# padding: 1rem 0;
# font-size: 3rem;
# color: #1F1F1F;
# }
# .sub-title {
# text-align: center;
# padding: 0.5rem 0;
# font-size: 1.5rem;
# color: #4F4F4F;
# }
# /* Description styling */
# .description {
# text-align: center;
# color: #666666;
# padding: 0.5rem 0;
# font-size: 1.1rem;
# line-height: 1.6;
# margin-bottom: 1rem;
# }
# /* Answer container styling */
# .stMarkdown {
# max-width: 100%;
# }
# /* Streamlit default overrides */
# .st-emotion-cache-16idsys p {
# font-size: 1.1rem;
# line-height: 1.6;
# }
# /* Container for main content */
# .main-content {
# max-width: 1200px;
# margin: 0 auto;
# padding: 0 1rem;
# }
# </style>
# """, unsafe_allow_html=True)
# # Header section
# st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
# st.markdown("""
# <p class='description'>
# Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
# </p>
# <p class='description'>
# Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
# </p>
# """, unsafe_allow_html=True)
# # Initialize the pipeline with better error handling
# if 'rag' not in st.session_state:
# try:
# with st.spinner("Loading resources..."):
# st.session_state.rag = initialize_rag_pipeline()
# logging.info("Pipeline initialized successfully")
# except Exception as e:
# logging.error(f"Pipeline initialization error: {str(e)}")
# st.error("Failed to initialize the system. Please check the logs.")
# st.stop()
# return
# # Create columns for layout
# col1, col2, col3 = st.columns([1, 6, 1])
# with col2:
# # Query input
# query = st.text_input("What would you like to know about sports?")
# if st.button("Get Answer"):
# if query:
# response_placeholder = st.empty()
# try:
# # Log query processing start
# logging.info(f"Processing query: {query}")
# # Process query and get response
# response = st.session_state.rag.process_query(query, response_placeholder)
# # Log successful response
# logging.info(f"Generated response: {response}")
# except Exception as e:
# # Log error details
# logging.error(f"Query processing error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# response_placeholder.warning("Unable to process your question. Please try again.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("<br><br>", unsafe_allow_html=True)
# st.markdown("---")
# st.markdown("""
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
# Powered by ESPN Data & Mistral AI π
# </p>
# """, unsafe_allow_html=True)
# except Exception as e:
# logging.error(f"Application error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# st.error("An unexpected error occurred. Please check the logs and try again.")
# if __name__ == "__main__":
# # Configure logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(levelname)s - %(message)s'
# )
# try:
# main()
# except Exception as e:
# logging.error(f"Fatal error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# st.error("A fatal error occurred. Please check the logs and try again.")
# if __name__ == "__main__":
# main()
def main():
try:
# First, check if model exists
model_path = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
if not os.path.exists(model_path):
st.warning("β οΈ First-time setup: The model will be downloaded. This takes a few minutes but only happens once.")
# Environment check
if not check_environment():
return
# Initialize session state variables
if 'current_query' not in st.session_state:
st.session_state.current_query = None
if 'processing' not in st.session_state:
st.session_state.processing = False
# Improved CSS styling
st.markdown("""
<style>
/* Container styling */
.block-container {
padding-top: 2rem;
padding-bottom: 2rem;
}
/* Text input styling */
.stTextInput > div > div > input {
width: 100%;
}
/* Button styling */
.stButton > button {
width: 200px;
margin: 0 auto;
display: block;
background-color: #FF4B4B;
color: white;
border-radius: 5px;
padding: 0.5rem 1rem;
}
/* Title styling */
.main-title {
text-align: center;
padding: 1rem 0;
font-size: 3rem;
color: #1F1F1F;
}
.sub-title {
text-align: center;
padding: 0.5rem 0;
font-size: 1.5rem;
color: #4F4F4F;
}
/* Description styling */
.description {
text-align: center;
color: #666666;
padding: 0.5rem 0;
font-size: 1.1rem;
line-height: 1.6;
margin-bottom: 1rem;
}
/* Answer container styling */
.stMarkdown {
max-width: 100%;
}
/* Streamlit default overrides */
.st-emotion-cache-16idsys p {
font-size: 1.1rem;
line-height: 1.6;
}
/* Container for main content */
.main-content {
max-width: 1200px;
margin: 0 auto;
padding: 0 1rem;
}
</style>
""", unsafe_allow_html=True)
# Header section
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
st.markdown("""
<p class='description'>
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
</p>
<p class='description'>
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
</p>
""", unsafe_allow_html=True)
# Initialize the pipeline
if 'rag' not in st.session_state:
try:
with st.spinner("Loading resources..."):
st.session_state.rag = initialize_rag_pipeline()
logging.info("Pipeline initialized successfully")
except Exception as e:
logging.error(f"Pipeline initialization error: {str(e)}")
st.error("Failed to initialize the system. Please check the logs.")
st.stop()
return
# Create columns for layout
col1, col2, col3 = st.columns([1, 6, 1])
with col2:
# Query input with unique key
query = st.text_input(
"What would you like to know about sports?",
key="sports_query"
)
# Centered button with unique key
if st.button("Get Answer", key="answer_button"):
if query:
# Clear any previous response
if 'response_placeholder' in st.session_state:
st.session_state.response_placeholder.empty()
response_placeholder = st.empty()
st.session_state.response_placeholder = response_placeholder
try:
# Update current query and processing state
st.session_state.current_query = query
st.session_state.processing = True
# Log query processing start
logging.info(f"Processing query: {query}")
with st.spinner("Processing your question..."):
# Process query and get response
response = st.session_state.rag.process_query(query, response_placeholder)
# Log successful response
logging.info(f"Generated response: {response}")
# Reset processing state
st.session_state.processing = False
except Exception as e:
# Log error details
logging.error(f"Query processing error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
response_placeholder.warning("Unable to process your question. Please try again.")
st.session_state.processing = False
else:
st.warning("Please enter a question!")
# Footer
st.markdown("<br><br>", unsafe_allow_html=True)
st.markdown("---")
st.markdown("""
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
Powered by ESPN Data & Mistral AI π
</p>
""", unsafe_allow_html=True)
except Exception as e:
logging.error(f"Application error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
st.error("An unexpected error occurred. Please check the logs and try again.")
if __name__ == "__main__":
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
try:
main()
except Exception as e:
logging.error(f"Fatal error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
st.error("A fatal error occurred. Please check the logs and try again.") |