Sport-Chatbot / app.py
nishantgaurav23's picture
Update app.py
7ecfcf2 verified
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import streamlit as st
import torch
import torch.nn.functional as F
import re
import requests
from embedding_processor import SentenceTransformerRetriever, process_data
import pickle
import logging
import sys
from llama_cpp import Llama
from tqdm import tqdm
# At the top of your script
os.environ['LLAMA_CPP_THREADS'] = '4'
os.environ['LLAMA_CPP_BATCH_SIZE'] = '512'
os.environ['LLAMA_CPP_MODEL_PATH'] = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
# Set page config first
st.set_page_config(
page_title="The Sport Chatbot",
page_icon="πŸ†",
layout="wide"
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
# Add this at the top level of your script, after imports
@st.cache_resource
def get_llama_model():
model_path = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
os.makedirs(os.path.dirname(model_path), exist_ok=True)
if not os.path.exists(model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, model_path)
llm_config = {
"model_path": model_path,
"n_ctx": 2048,
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": False,
"use_mlock": True
}
return Llama(**llm_config)
def download_file_with_progress(url: str, filename: str):
"""Download a file with progress bar using requests"""
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
with open(filename, 'wb') as file, tqdm(
desc=filename,
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as progress_bar:
for data in response.iter_content(chunk_size=1024):
size = file.write(data)
progress_bar.update(size)
@st.cache_data
def load_from_drive(file_id: str):
"""Load pickle file directly from Google Drive"""
try:
url = f"https://drive.google.com/uc?id={file_id}&export=download"
session = requests.Session()
response = session.get(url, stream=True)
for key, value in response.cookies.items():
if key.startswith('download_warning'):
url = f"{url}&confirm={value}"
response = session.get(url, stream=True)
break
content = response.content
print(f"Successfully downloaded {len(content)} bytes")
return pickle.loads(content)
except Exception as e:
print(f"Detailed error: {str(e)}")
st.error(f"Error loading file from Drive: {str(e)}")
return None
# @st.cache_resource(show_spinner=False)
# def load_llama_model():
# """Load Llama model with caching"""
# try:
# model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
# if not os.path.exists(model_path):
# st.info("Downloading model... This may take a while.")
# direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
# download_file_with_progress(direct_url, model_path)
# llm_config = {
# "model_path": model_path,
# "n_ctx": 2048,
# "n_threads": 4,
# "n_batch": 512,
# "n_gpu_layers": 0,
# "verbose": False
# }
# model = Llama(**llm_config)
# st.success("Model loaded successfully!")
# return model
# except Exception as e:
# st.error(f"Error loading model: {str(e)}")
# raise
@st.cache_resource(show_spinner=False)
def load_llama_model():
"""Load Llama model with caching"""
try:
model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
if not os.path.exists(model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, model_path)
if not os.path.exists(model_path):
raise FileNotFoundError("Model file not found after download attempt")
if os.path.getsize(model_path) < 1000000: # Less than 1MB
raise ValueError("Model file is too small, likely corrupted")
llm_config = {
"model_path": model_path,
"n_ctx": 2048,
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": True # Enable verbose mode for debugging
}
logging.info("Initializing Llama model...")
model = Llama(**llm_config)
# Test the model
logging.info("Testing model...")
test_response = model("Test", max_tokens=10)
if not test_response:
raise RuntimeError("Model test failed")
logging.info("Model loaded and tested successfully")
st.success("Model loaded successfully!")
return model
except Exception as e:
logging.error(f"Error loading model: {str(e)}")
logging.error("Full error details: ", exc_info=True)
raise
def check_environment():
"""Check if the environment is properly set up"""
try:
import torch
import sentence_transformers
return True
except ImportError as e:
st.error(f"Missing required package: {str(e)}")
st.stop()
return False
class RAGPipeline:
def __init__(self, data_folder: str, k: int = 5):
self.data_folder = data_folder
self.k = k
self.retriever = SentenceTransformerRetriever()
self.documents = []
self.device = torch.device("cpu")
# Use the cached model directly
self.llm = get_llama_model()
def preprocess_query(self, query: str) -> str:
"""Clean and prepare the query"""
query = query.lower().strip()
query = re.sub(r'\s+', ' ', query)
return query
### Added on Nov 2, 2024
# def postprocess_response(self, response: str) -> str:
# """Clean up the generated response"""
# response = response.strip()
# response = re.sub(r'\s+', ' ', response)
# response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
# return response
# def query_model(self, prompt: str) -> str:
# """Query the local Llama model"""
# try:
# if self.llm is None:
# raise RuntimeError("Model not initialized")
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "\n\n"]
# )
# if response and 'choices' in response and len(response['choices']) > 0:
# text = response['choices'][0].get('text', '').strip()
# return text
# else:
# raise ValueError("No valid response generated")
# except Exception as e:
# logging.error(f"Error in query_model: {str(e)}")
# raise
# def process_query(self, query: str, placeholder) -> str:
# try:
# # Preprocess query
# query = self.preprocess_query(query)
# # Show retrieval status
# status = placeholder.empty()
# status.write("πŸ” Finding relevant information...")
# # Get embeddings and search
# query_embedding = self.retriever.encode([query])
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
# # Update status
# status.write("πŸ’­ Generating response...")
# # Prepare context and prompt
# context = "\n".join(relevant_docs[:3])
# prompt = f"""Context information is below:
# {context}
# Given the context above, please answer the following question:
# {query}
# Guidelines:
# - If you cannot answer based on the context, say so politely
# - Keep the response concise and focused
# - Only include sports-related information
# - No dates or timestamps in the response
# - Use clear, natural language
# Answer:"""
# # Generate response
# response_placeholder = placeholder.empty()
# try:
# response_text = self.query_model(prompt)
# if response_text:
# final_response = self.postprocess_response(response_text)
# response_placeholder.markdown(final_response)
# return final_response
# else:
# message = "No relevant answer found. Please try rephrasing your question."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Generation error: {str(e)}")
# message = "Had some trouble generating the response. Please try again."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Process error: {str(e)}")
# message = "Something went wrong. Please try again with a different question."
# placeholder.warning(message)
# return message
# def process_query(self, query: str, placeholder) -> str:
# try:
# # Preprocess query
# query = self.preprocess_query(query)
# logging.info(f"Processing query: {query}")
# # Show retrieval status
# status = placeholder.empty()
# status.write("πŸ” Finding relevant information...")
# # Get embeddings and search
# query_embedding = self.retriever.encode([query])
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
# # Log similarity scores
# for idx, score in zip(indices.tolist(), scores.tolist()):
# logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
# # Update status
# status.write("πŸ’­ Generating response...")
# # Prepare context and prompt
# context = "\n".join(relevant_docs[:3])
# prompt = f"""Context information is below:
# {context}
# Given the context above, please answer the following question:
# {query}
# Guidelines:
# - If you cannot answer based on the context, say so politely
# - Keep the response concise and focused
# - Only include sports-related information
# - No dates or timestamps in the response
# - Use clear, natural language
# Answer:"""
# # Generate response
# response_placeholder = placeholder.empty()
# try:
# # Add logging for model state
# logging.info("Model state check - Is None?: " + str(self.llm is None))
# # Directly use Llama model
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "\n\n"]
# )
# logging.info(f"Raw model response: {response}")
# if response and isinstance(response, dict) and 'choices' in response:
# generated_text = response['choices'][0].get('text', '').strip()
# if generated_text:
# final_response = self.postprocess_response(generated_text)
# response_placeholder.markdown(final_response)
# return final_response
# message = "No relevant answer found. Please try rephrasing your question."
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Generation error: {str(e)}")
# logging.error(f"Full error details: ", exc_info=True)
# message = f"Had some trouble generating the response: {str(e)}"
# response_placeholder.warning(message)
# return message
# except Exception as e:
# logging.error(f"Process error: {str(e)}")
# logging.error(f"Full error details: ", exc_info=True)
# message = f"Something went wrong: {str(e)}"
# placeholder.warning(message)
# return message
### Added on Nov 2, 2024
def postprocess_response(self, response: str) -> str:
"""Clean up the generated response"""
try:
# Remove datetime patterns and other unwanted content
response = re.sub(r'\d{4}-\d{2}-\d{2}(?:T|\s)\d{2}:\d{2}:\d{2}(?:\.\d+)?(?:Z|[+-]\d{2}:?\d{2})?', '', response)
response = re.sub(r'User \d+:.*?(?=User \d+:|$)', '', response)
response = re.sub(r'\d{2}:\d{2}(?::\d{2})?(?:\s?(?:AM|PM))?', '', response)
response = re.sub(r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}', '', response)
response = re.sub(r'(?m)^User \d+:', '', response)
# Clean up spacing but preserve intentional paragraph breaks
# Replace multiple newlines with two newlines (one paragraph break)
response = re.sub(r'\n\s*\n\s*\n+', '\n\n', response)
# Replace multiple spaces with single space
response = re.sub(r' +', ' ', response)
# Clean up beginning/end
response = response.strip()
return response
except Exception as e:
logging.error(f"Error in postprocess_response: {str(e)}")
return response
def process_query(self, query: str, placeholder) -> str:
try:
# Verify this is the current query being processed
if hasattr(st.session_state, 'current_query') and query != st.session_state.current_query:
logging.warning(f"Skipping outdated query: {query}")
return ""
query = self.preprocess_query(query)
status = placeholder.empty()
status.write("πŸ” Finding relevant information...")
query_embedding = self.retriever.encode([query])
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
cleaned_docs = []
for doc in relevant_docs[:3]:
cleaned_text = self.postprocess_response(doc)
if cleaned_text:
cleaned_docs.append(cleaned_text)
status.write("πŸ’­ Generating response...")
prompt = f"""Context information is below:
{' '.join(cleaned_docs)}
Given the context above, please answer the following question:
{query}
Guidelines for your response:
- Structure your response in clear, logical paragraphs
- Start a new paragraph for each new main point or aspect
- If listing multiple items, use separate paragraphs
- Keep each paragraph focused on a single topic or point
- Use natural paragraph breaks where the content shifts focus
- Maintain clear transitions between paragraphs
- If providing statistics or achievements, group them logically
- If describing different aspects (e.g., career, playing style, achievements), use separate paragraphs
- Keep paragraphs concise but complete
- Exclude any dates, timestamps, or user comments
- Focus on factual sports information
- If you cannot answer based on the context, say so politely
Format your response with proper paragraph breaks where appropriate.
Answer:"""
response_placeholder = placeholder.empty()
try:
response_text = self.query_model(prompt)
if response_text:
# Clean up the response while preserving paragraph structure
final_response = self.postprocess_response(response_text)
# Convert cleaned response to markdown with proper paragraph spacing
markdown_response = final_response.replace('\n\n', '\n\n&nbsp;\n\n')
response_placeholder.markdown(markdown_response)
return final_response
else:
message = "No relevant answer found. Please try rephrasing your question."
response_placeholder.warning(message)
return message
except Exception as e:
logging.error(f"Generation error: {str(e)}")
message = "Had some trouble generating the response. Please try again."
response_placeholder.warning(message)
return message
except Exception as e:
logging.error(f"Process error: {str(e)}")
message = "Something went wrong. Please try again with a different question."
placeholder.warning(message)
return message
# def query_model(self, prompt: str) -> str:
# """Query the local Llama model"""
# try:
# if self.llm is None:
# raise RuntimeError("Model not initialized")
# response = self.llm(
# prompt,
# max_tokens=512,
# temperature=0.4,
# top_p=0.95,
# echo=False,
# stop=["Question:", "Context:", "Guidelines:"], # Removed \n\n from stop tokens to allow paragraphs
# repeat_penalty=1.1 # Added to encourage more diverse text
# )
# if response and 'choices' in response and len(response['choices']) > 0:
# text = response['choices'][0].get('text', '').strip()
# return text
# else:
# raise ValueError("No valid response generated")
# except Exception as e:
# logging.error(f"Error in query_model: {str(e)}")
# raise
def query_model(self, prompt: str) -> str:
"""Query the local Llama model"""
try:
if self.llm is None:
raise RuntimeError("Model not initialized")
# Log the prompt for debugging
logging.info(f"Sending prompt to model...")
# Generate response with more explicit parameters
response = self.llm(
prompt,
max_tokens=512, # Maximum length of the response
temperature=0.7, # Slightly increased for more dynamic responses
top_p=0.95, # Nucleus sampling parameter
top_k=50, # Top-k sampling parameter
echo=False, # Don't include prompt in response
stop=["Question:", "Context:", "Guidelines:"], # Stop tokens
repeat_penalty=1.1, # Penalize repetition
presence_penalty=0.5, # Encourage topic diversity
frequency_penalty=0.5 # Discourage word repetition
)
# Log the raw response for debugging
logging.info(f"Raw model response: {response}")
if response and isinstance(response, dict) and 'choices' in response and response['choices']:
generated_text = response['choices'][0].get('text', '').strip()
if generated_text:
logging.info(f"Generated text: {generated_text[:100]}...") # Log first 100 chars
return generated_text
else:
logging.warning("Model returned empty response")
raise ValueError("Empty response from model")
else:
logging.warning(f"Unexpected response format: {response}")
raise ValueError("Invalid response format from model")
except Exception as e:
logging.error(f"Error in query_model: {str(e)}")
logging.error("Full error details: ", exc_info=True)
raise
def initialize_model(self):
"""Initialize the model with proper error handling and verification"""
try:
if not os.path.exists(self.model_path):
st.info("Downloading model... This may take a while.")
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
download_file_with_progress(direct_url, self.model_path)
# Verify file exists and has content
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model file {self.model_path} not found after download attempts")
if os.path.getsize(self.model_path) < 1000000: # Less than 1MB
os.remove(self.model_path)
raise ValueError("Downloaded model file is too small, likely corrupted")
# Updated model configuration
llm_config = {
"model_path": self.model_path,
"n_ctx": 4096, # Increased context window
"n_threads": 4,
"n_batch": 512,
"n_gpu_layers": 0,
"verbose": True, # Enable verbose mode for debugging
"use_mlock": False, # Disable memory locking
"last_n_tokens_size": 64, # Token window size for repeat penalty
"seed": -1 # Random seed for reproducibility
}
logging.info("Initializing Llama model...")
self.llm = Llama(**llm_config)
# Test the model
test_response = self.llm(
"Test response",
max_tokens=10,
temperature=0.7,
echo=False
)
if not test_response or 'choices' not in test_response:
raise RuntimeError("Model initialization test failed")
logging.info("Model initialized and tested successfully")
return self.llm
except Exception as e:
logging.error(f"Error initializing model: {str(e)}")
raise
# @st.cache_resource(show_spinner=False)
# def initialize_rag_pipeline():
# """Initialize the RAG pipeline once"""
# try:
# # Create necessary directories
# os.makedirs("ESPN_data", exist_ok=True)
# # Load embeddings from Drive
# drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
# with st.spinner("Loading embeddings from Google Drive..."):
# cache_data = load_from_drive(drive_file_id)
# if cache_data is None:
# st.error("Failed to load embeddings from Google Drive")
# st.stop()
# # Initialize pipeline
# data_folder = "ESPN_data"
# rag = RAGPipeline(data_folder)
# # Store embeddings
# rag.documents = cache_data['documents']
# rag.retriever.store_embeddings(cache_data['embeddings'])
# return rag
# except Exception as e:
# logging.error(f"Pipeline initialization error: {str(e)}")
# st.error(f"Failed to initialize the system: {str(e)}")
# raise
@st.cache_resource(show_spinner=False)
def initialize_rag_pipeline():
"""Initialize the RAG pipeline once"""
try:
data_folder = "ESPN_data"
if not os.path.exists(data_folder):
os.makedirs(data_folder, exist_ok=True)
# Load embeddings first
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
with st.spinner("Loading data..."):
cache_data = load_from_drive(drive_file_id)
if cache_data is None:
st.error("Failed to load embeddings from Google Drive")
st.stop()
# Initialize pipeline
rag = RAGPipeline(data_folder)
# Store embeddings
rag.documents = cache_data['documents']
rag.retriever.store_embeddings(cache_data['embeddings'])
return rag
except Exception as e:
logging.error(f"Pipeline initialization error: {str(e)}")
st.error(f"Failed to initialize the system: {str(e)}")
raise
# def main():
# try:
# # Environment check
# if not check_environment():
# return
# # Improved CSS styling
# st.markdown("""
# <style>
# /* Container styling */
# .block-container {
# padding-top: 2rem;
# padding-bottom: 2rem;
# }
# /* Text input styling */
# .stTextInput > div > div > input {
# width: 100%;
# }
# /* Button styling */
# .stButton > button {
# width: 200px;
# margin: 0 auto;
# display: block;
# background-color: #FF4B4B;
# color: white;
# border-radius: 5px;
# padding: 0.5rem 1rem;
# }
# /* Title styling */
# .main-title {
# text-align: center;
# padding: 1rem 0;
# font-size: 3rem;
# color: #1F1F1F;
# }
# .sub-title {
# text-align: center;
# padding: 0.5rem 0;
# font-size: 1.5rem;
# color: #4F4F4F;
# }
# /* Description styling */
# .description {
# text-align: center;
# color: #666666;
# padding: 0.5rem 0;
# font-size: 1.1rem;
# line-height: 1.6;
# margin-bottom: 1rem;
# }
# /* Answer container styling */
# .stMarkdown {
# max-width: 100%;
# }
# /* Streamlit default overrides */
# .st-emotion-cache-16idsys p {
# font-size: 1.1rem;
# line-height: 1.6;
# }
# /* Container for main content */
# .main-content {
# max-width: 1200px;
# margin: 0 auto;
# padding: 0 1rem;
# }
# </style>
# """, unsafe_allow_html=True)
# # Header section
# st.markdown("<h1 class='main-title'>πŸ† The Sport Chatbot</h1>", unsafe_allow_html=True)
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
# st.markdown("""
# <p class='description'>
# Hey there! πŸ‘‹ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
# </p>
# <p class='description'>
# Got any general questions? Feel free to askβ€”I'll do my best to provide answers based on the information I've been trained on!
# </p>
# """, unsafe_allow_html=True)
# # Initialize the pipeline
# if 'rag' not in st.session_state:
# with st.spinner("Loading resources..."):
# st.session_state.rag = initialize_rag_pipeline()
# # Create columns for layout
# col1, col2, col3 = st.columns([1, 6, 1])
# with col2:
# # Query input
# query = st.text_input("What would you like to know about sports?")
# if st.button("Get Answer"):
# if query:
# response_placeholder = st.empty()
# try:
# response = st.session_state.rag.process_query(query, response_placeholder)
# logging.info(f"Generated response: {response}")
# except Exception as e:
# logging.error(f"Query processing error: {str(e)}")
# response_placeholder.warning("Unable to process your question. Please try again.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("<br><br>", unsafe_allow_html=True)
# st.markdown("---")
# st.markdown("""
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
# Powered by ESPN Data & Mistral AI πŸš€
# </p>
# """, unsafe_allow_html=True)
# except Exception as e:
# logging.error(f"Application error: {str(e)}")
# st.error("An unexpected error occurred. Please check the logs and try again.")
# def main():
# try:
# # Environment check
# if not check_environment():
# return
# # Improved CSS styling
# st.markdown("""
# <style>
# /* Container styling */
# .block-container {
# padding-top: 2rem;
# padding-bottom: 2rem;
# }
# /* Text input styling */
# .stTextInput > div > div > input {
# width: 100%;
# }
# /* Button styling */
# .stButton > button {
# width: 200px;
# margin: 0 auto;
# display: block;
# background-color: #FF4B4B;
# color: white;
# border-radius: 5px;
# padding: 0.5rem 1rem;
# }
# /* Title styling */
# .main-title {
# text-align: center;
# padding: 1rem 0;
# font-size: 3rem;
# color: #1F1F1F;
# }
# .sub-title {
# text-align: center;
# padding: 0.5rem 0;
# font-size: 1.5rem;
# color: #4F4F4F;
# }
# /* Description styling */
# .description {
# text-align: center;
# color: #666666;
# padding: 0.5rem 0;
# font-size: 1.1rem;
# line-height: 1.6;
# margin-bottom: 1rem;
# }
# /* Answer container styling */
# .stMarkdown {
# max-width: 100%;
# }
# /* Streamlit default overrides */
# .st-emotion-cache-16idsys p {
# font-size: 1.1rem;
# line-height: 1.6;
# }
# /* Container for main content */
# .main-content {
# max-width: 1200px;
# margin: 0 auto;
# padding: 0 1rem;
# }
# </style>
# """, unsafe_allow_html=True)
# # Header section
# st.markdown("<h1 class='main-title'>πŸ† The Sport Chatbot</h1>", unsafe_allow_html=True)
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
# st.markdown("""
# <p class='description'>
# Hey there! πŸ‘‹ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
# </p>
# <p class='description'>
# Got any general questions? Feel free to askβ€”I'll do my best to provide answers based on the information I've been trained on!
# </p>
# """, unsafe_allow_html=True)
# # Initialize the pipeline with better error handling
# if 'rag' not in st.session_state:
# try:
# with st.spinner("Loading resources..."):
# st.session_state.rag = initialize_rag_pipeline()
# logging.info("Pipeline initialized successfully")
# except Exception as e:
# logging.error(f"Pipeline initialization error: {str(e)}")
# st.error("Failed to initialize the system. Please check the logs.")
# st.stop()
# return
# # Create columns for layout
# col1, col2, col3 = st.columns([1, 6, 1])
# with col2:
# # Query input
# query = st.text_input("What would you like to know about sports?")
# if st.button("Get Answer"):
# if query:
# response_placeholder = st.empty()
# try:
# # Log query processing start
# logging.info(f"Processing query: {query}")
# # Process query and get response
# response = st.session_state.rag.process_query(query, response_placeholder)
# # Log successful response
# logging.info(f"Generated response: {response}")
# except Exception as e:
# # Log error details
# logging.error(f"Query processing error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# response_placeholder.warning("Unable to process your question. Please try again.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("<br><br>", unsafe_allow_html=True)
# st.markdown("---")
# st.markdown("""
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
# Powered by ESPN Data & Mistral AI πŸš€
# </p>
# """, unsafe_allow_html=True)
# except Exception as e:
# logging.error(f"Application error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# st.error("An unexpected error occurred. Please check the logs and try again.")
# if __name__ == "__main__":
# # Configure logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(levelname)s - %(message)s'
# )
# try:
# main()
# except Exception as e:
# logging.error(f"Fatal error: {str(e)}")
# logging.error("Full error details: ", exc_info=True)
# st.error("A fatal error occurred. Please check the logs and try again.")
# if __name__ == "__main__":
# main()
def main():
try:
# First, check if model exists
model_path = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
if not os.path.exists(model_path):
st.warning("⚠️ First-time setup: The model will be downloaded. This takes a few minutes but only happens once.")
# Environment check
if not check_environment():
return
# Initialize session state variables
if 'current_query' not in st.session_state:
st.session_state.current_query = None
if 'processing' not in st.session_state:
st.session_state.processing = False
# Improved CSS styling
st.markdown("""
<style>
/* Container styling */
.block-container {
padding-top: 2rem;
padding-bottom: 2rem;
}
/* Text input styling */
.stTextInput > div > div > input {
width: 100%;
}
/* Button styling */
.stButton > button {
width: 200px;
margin: 0 auto;
display: block;
background-color: #FF4B4B;
color: white;
border-radius: 5px;
padding: 0.5rem 1rem;
}
/* Title styling */
.main-title {
text-align: center;
padding: 1rem 0;
font-size: 3rem;
color: #1F1F1F;
}
.sub-title {
text-align: center;
padding: 0.5rem 0;
font-size: 1.5rem;
color: #4F4F4F;
}
/* Description styling */
.description {
text-align: center;
color: #666666;
padding: 0.5rem 0;
font-size: 1.1rem;
line-height: 1.6;
margin-bottom: 1rem;
}
/* Answer container styling */
.stMarkdown {
max-width: 100%;
}
/* Streamlit default overrides */
.st-emotion-cache-16idsys p {
font-size: 1.1rem;
line-height: 1.6;
}
/* Container for main content */
.main-content {
max-width: 1200px;
margin: 0 auto;
padding: 0 1rem;
}
</style>
""", unsafe_allow_html=True)
# Header section
st.markdown("<h1 class='main-title'>πŸ† The Sport Chatbot</h1>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
st.markdown("""
<p class='description'>
Hey there! πŸ‘‹ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
</p>
<p class='description'>
Got any general questions? Feel free to askβ€”I'll do my best to provide answers based on the information I've been trained on!
</p>
""", unsafe_allow_html=True)
# Initialize the pipeline
if 'rag' not in st.session_state:
try:
with st.spinner("Loading resources..."):
st.session_state.rag = initialize_rag_pipeline()
logging.info("Pipeline initialized successfully")
except Exception as e:
logging.error(f"Pipeline initialization error: {str(e)}")
st.error("Failed to initialize the system. Please check the logs.")
st.stop()
return
# Create columns for layout
col1, col2, col3 = st.columns([1, 6, 1])
with col2:
# Query input with unique key
query = st.text_input(
"What would you like to know about sports?",
key="sports_query"
)
# Centered button with unique key
if st.button("Get Answer", key="answer_button"):
if query:
# Clear any previous response
if 'response_placeholder' in st.session_state:
st.session_state.response_placeholder.empty()
response_placeholder = st.empty()
st.session_state.response_placeholder = response_placeholder
try:
# Update current query and processing state
st.session_state.current_query = query
st.session_state.processing = True
# Log query processing start
logging.info(f"Processing query: {query}")
with st.spinner("Processing your question..."):
# Process query and get response
response = st.session_state.rag.process_query(query, response_placeholder)
# Log successful response
logging.info(f"Generated response: {response}")
# Reset processing state
st.session_state.processing = False
except Exception as e:
# Log error details
logging.error(f"Query processing error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
response_placeholder.warning("Unable to process your question. Please try again.")
st.session_state.processing = False
else:
st.warning("Please enter a question!")
# Footer
st.markdown("<br><br>", unsafe_allow_html=True)
st.markdown("---")
st.markdown("""
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
Powered by ESPN Data & Mistral AI πŸš€
</p>
""", unsafe_allow_html=True)
except Exception as e:
logging.error(f"Application error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
st.error("An unexpected error occurred. Please check the logs and try again.")
if __name__ == "__main__":
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
try:
main()
except Exception as e:
logging.error(f"Fatal error: {str(e)}")
logging.error("Full error details: ", exc_info=True)
st.error("A fatal error occurred. Please check the logs and try again.")