Spaces:
Running
Running
import streamlit as st | |
from datetime import datetime | |
import pandas as pd | |
from lime.lime_text import LimeTextExplainer | |
from test import predict_hoax, predict_proba_for_lime | |
import streamlit.components.v1 as components | |
from load_model import load_model | |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode | |
from styles import COMMON_CSS | |
from google.cloud import storage | |
import os | |
from io import StringIO | |
# Set environment variable for Google Cloud credentials | |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "D:\DashboardHoax\inbound-source-431806-g7-e49e388ce0be.json" | |
def save_corrections_to_gcs(bucket_name, file_name, correction_data): | |
client = storage.Client() # Uses the credentials set by the environment variable | |
bucket = client.bucket("dashboardhoax-bucket") | |
blob = bucket.blob("koreksi_pengguna_content.csv") | |
# Check if the blob (file) exists | |
if blob.exists(): | |
# Download existing CSV from GCS | |
existing_data = blob.download_as_string().decode('utf-8') | |
existing_df = pd.read_csv(StringIO(existing_data)) | |
else: | |
# Create a new DataFrame if the file does not exist | |
existing_df = pd.DataFrame(columns=['Timestamp', 'Title', 'Content', 'Prediction', 'Correction']) | |
# Append the new data to the existing data | |
new_data_df = pd.DataFrame(correction_data) | |
updated_df = pd.concat([existing_df, new_data_df], ignore_index=True) | |
# Convert the DataFrame back to CSV and upload | |
updated_csv_data = updated_df.to_csv(index=False) | |
blob.upload_from_string(updated_csv_data, content_type='text/csv') | |
def show_deteksi_konten(): | |
st.markdown(COMMON_CSS, unsafe_allow_html=True) | |
if 'correction' not in st.session_state: | |
st.session_state.correction = None | |
if 'detection_result' not in st.session_state: | |
st.session_state.detection_result = None | |
if 'lime_explanation' not in st.session_state: | |
st.session_state.lime_explanation = None | |
if 'headline' not in st.session_state: | |
st.session_state.headline = "" | |
if 'content' not in st.session_state: | |
st.session_state.content = "" | |
if 'is_correct' not in st.session_state: | |
st.session_state.is_correct = None | |
# Dropdown for selecting a model | |
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Pilih Model</h6>", unsafe_allow_html=True) | |
selected_model = st.selectbox( | |
"", | |
[ | |
"cahya/bert-base-indonesian-522M", | |
"indobenchmark/indobert-base-p2", | |
"indolem/indobert-base-uncased", | |
"mdhugol/indonesia-bert-sentiment-classification" | |
], | |
key="model_selector_content" | |
) | |
# Load the selected model | |
tokenizer, model = load_model(selected_model) | |
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Judul Berita :</h6>", unsafe_allow_html=True) | |
st.session_state.headline = st.text_input("", value=st.session_state.headline) | |
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Konten Berita :</h6>", unsafe_allow_html=True) | |
st.session_state.content = st.text_area("", value=st.session_state.content) | |
# Detection button | |
if st.button("Deteksi", key="detect_content"): | |
st.session_state.detection_result = predict_hoax(st.session_state.headline, st.session_state.content) | |
st.success(f"Prediksi: {st.session_state.detection_result}") | |
# Prepare the text for LIME | |
lime_texts = [f"{st.session_state.headline} [SEP] {st.session_state.content}"] | |
# Add a spinner and progress bar to indicate processing | |
with st.spinner("Sedang memproses LIME, harap tunggu..."): | |
# Explain the prediction | |
explainer = LimeTextExplainer(class_names=['NON-HOAX', 'HOAX']) | |
explanation = explainer.explain_instance(lime_texts[0], predict_proba_for_lime, num_features=5, num_samples=1000) | |
# Save the LIME explanation in session state | |
st.session_state.lime_explanation = explanation.as_html() | |
# Display the detection result and LIME explanation if available | |
if st.session_state.lime_explanation: | |
lime_html = st.session_state.lime_explanation | |
# Inject CSS for font size adjustment | |
lime_html = f""" | |
<style> | |
.lime-text-explanation, .lime-highlight, .lime-classification, | |
.lime-text-explanation * {{ | |
font-size: 14px !important; | |
}} | |
</style> | |
<div class="lime-text-explanation"> | |
{lime_html} | |
</div> | |
""" | |
components.html(lime_html, height=200, scrolling=True) | |
# Display a radio button asking if the detection result is correct | |
if st.session_state.detection_result is not None: | |
st.markdown("<h6 style='font-size: 16px; margin-bottom: -150px;'>Apakah hasil deteksi sudah benar?</h6>", unsafe_allow_html=True) | |
st.session_state.is_correct = st.radio("", ("Ya", "Tidak")) | |
if st.session_state.is_correct == "Ya": | |
st.success("Deteksi sudah benar.") | |
else: | |
# Determine the correction based on the prediction | |
st.session_state.correction = "HOAX" if st.session_state.detection_result == "NON-HOAX" else "NON-HOAX" | |
# Display the correction DataFrame | |
correction_data = [{ | |
'Title': st.session_state.headline, | |
'Content': st.session_state.content, | |
'Prediction': st.session_state.detection_result, | |
'Correction': st.session_state.correction, | |
'Timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
}] | |
# Save button | |
if st.button("Simpan"): | |
# Save the correction data to GCS | |
save_corrections_to_gcs("your-bucket-name", "koreksi_pengguna.csv", correction_data) | |
# Create a formatted string with CSS for alignment and multi-line content handling | |
formatted_text = f""" | |
<div style='font-size: 14px;'> | |
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Title</span> : <span style='white-space: pre-wrap;'>{st.session_state.headline}</span></p> | |
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Content</span> : <span style='white-space: pre-wrap;'>{st.session_state.content}</span></p> | |
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Prediction</span> : {st.session_state.detection_result}</p> | |
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Correction</span> : {st.session_state.correction}</p> | |
</div> | |
""" | |
# Display the correction as text | |
st.markdown(formatted_text, unsafe_allow_html=True) | |
st.success("Koreksi telah disimpan.") | |