|
## BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation |
|
|
|
## Announcement: BLIP is now officially integrated into [LAVIS](https://github.com/salesforce/LAVIS) - a one-stop library for language-and-vision research and applications! |
|
|
|
<img src="BLIP.gif" width="700"> |
|
|
|
This is the PyTorch code of the <a href="https://arxiv.org/abs/2201.12086">BLIP paper</a> [[blog](https://blog.salesforceairesearch.com/blip-bootstrapping-language-image-pretraining/)]. The code has been tested on PyTorch 1.10. |
|
To install the dependencies, run <pre/>pip install -r requirements.txt</pre> |
|
|
|
Catalog: |
|
- [x] Inference demo |
|
- [x] Pre-trained and finetuned checkpoints |
|
- [x] Finetuning code for Image-Text Retrieval, Image Captioning, VQA, and NLVR2 |
|
- [x] Pre-training code |
|
- [x] Zero-shot video-text retrieval |
|
- [x] Download of bootstrapped pre-training datasets |
|
|
|
|
|
### Inference demo: |
|
Run our interactive demo using [Colab notebook](https://colab.research.google.com/github/salesforce/BLIP/blob/main/demo.ipynb) (no GPU needed). |
|
The demo includes code for: |
|
1. Image captioning |
|
2. Open-ended visual question answering |
|
3. Multimodal / unimodal feature extraction |
|
4. Image-text matching |
|
|
|
Try out the [Web demo](https://huggingface.co/spaces/Salesforce/BLIP), integrated into [Huggingface Spaces π€](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). |
|
|
|
Replicate web demo and Docker image is also available at [![Replicate](https://replicate.com/salesforce/blip/badge)](https://replicate.com/salesforce/blip) |
|
|
|
### Pre-trained checkpoints: |
|
Num. pre-train images | BLIP w/ ViT-B | BLIP w/ ViT-B and CapFilt-L | BLIP w/ ViT-L |
|
--- | :---: | :---: | :---: |
|
14M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_14M.pth">Download</a>| - | - |
|
129M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth">Download</a> | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large.pth">Download</a> |
|
|
|
### Finetuned checkpoints: |
|
Task | BLIP w/ ViT-B | BLIP w/ ViT-B and CapFilt-L | BLIP w/ ViT-L |
|
--- | :---: | :---: | :---: |
|
Image-Text Retrieval (COCO) | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth">Download</a>| - | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco.pth">Download</a> |
|
Image-Text Retrieval (Flickr30k) | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth">Download</a>| - | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_flickr.pth">Download</a> |
|
Image Captioning (COCO) | - | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth">Download</a> | |
|
VQA | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth">Download</a> | - |
|
NLVR2 | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth">Download</a>| - | - |
|
|
|
|
|
### Image-Text Retrieval: |
|
1. Download COCO and Flickr30k datasets from the original websites, and set 'image_root' in configs/retrieval_{dataset}.yaml accordingly. |
|
2. To evaluate the finetuned BLIP model on COCO, run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \ |
|
--config ./configs/retrieval_coco.yaml \ |
|
--output_dir output/retrieval_coco \ |
|
--evaluate</pre> |
|
3. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \ |
|
--config ./configs/retrieval_coco.yaml \ |
|
--output_dir output/retrieval_coco </pre> |
|
|
|
### Image-Text Captioning: |
|
1. Download COCO and NoCaps datasets from the original websites, and set 'image_root' in configs/caption_coco.yaml and configs/nocaps.yaml accordingly. |
|
2. To evaluate the finetuned BLIP model on COCO, run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_caption.py --evaluate</pre> |
|
3. To evaluate the finetuned BLIP model on NoCaps, generate results with: (evaluation needs to be performed on official server) |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 eval_nocaps.py </pre> |
|
4. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/caption_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth". Then run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_caption.py </pre> |
|
|
|
### VQA: |
|
1. Download VQA v2 dataset and Visual Genome dataset from the original websites, and set 'vqa_root' and 'vg_root' in configs/vqa.yaml. |
|
2. To evaluate the finetuned BLIP model, generate results with: (evaluation needs to be performed on official server) |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_vqa.py --evaluate</pre> |
|
3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/vqa.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth". Then run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=16 train_vqa.py </pre> |
|
|
|
### NLVR2: |
|
1. Download NLVR2 dataset from the original websites, and set 'image_root' in configs/nlvr.yaml. |
|
2. To evaluate the finetuned BLIP model, run |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 train_nlvr.py --evaluate</pre> |
|
3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/nlvr.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run: |
|
<pre>python -m torch.distributed.run --nproc_per_node=16 train_nlvr.py </pre> |
|
|
|
### Finetune with ViT-L: |
|
In order to finetune a model with ViT-L, simply change the config file to set 'vit' as large. Batch size and learning rate may also need to be adjusted accordingly (please see the paper's appendix for hyper-parameter details). <a href="https://github.com/facebookresearch/fairscale">Gradient checkpoint</a> can also be activated in the config file to reduce GPU memory usage. |
|
|
|
### Pre-train: |
|
1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}. |
|
2. In configs/pretrain.yaml, set 'train_file' as the paths for the json files . |
|
3. Pre-train the model using 8 A100 GPUs: |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain </pre> |
|
|
|
### Zero-shot video-text retrieval: |
|
1. Download MSRVTT dataset following the instructions from https://github.com/salesforce/ALPRO, and set 'video_root' accordingly in configs/retrieval_msrvtt.yaml. |
|
2. Install [decord](https://github.com/dmlc/decord) with <pre>pip install decord</pre> |
|
3. To perform zero-shot evaluation, run |
|
<pre>python -m torch.distributed.run --nproc_per_node=8 eval_retrieval_video.py</pre> |
|
|
|
### Pre-training datasets download: |
|
We provide bootstrapped pre-training datasets as json files. Each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'url': url_of_image, 'caption': text_of_image}. |
|
|
|
Image source | Filtered web caption | Filtered synthetic caption by ViT-B | Filtered synthetic caption by ViT-L |
|
--- | :---: | :---: | :---: |
|
CC3M+CC12M+SBU | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/ccs_filtered.json">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/ccs_synthetic_filtered.json">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/ccs_synthetic_filtered_large.json">Download</a> |
|
LAION115M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/laion_filtered.json">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/laion_synthetic_filtered.json">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/laion_synthetic_filtered_large.json">Download</a> |
|
|
|
### Citation |
|
If you find this code to be useful for your research, please consider citing. |
|
<pre> |
|
@inproceedings{li2022blip, |
|
title={BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, |
|
author={Junnan Li and Dongxu Li and Caiming Xiong and Steven Hoi}, |
|
year={2022}, |
|
booktitle={ICML}, |
|
}</pre> |
|
|
|
### Acknowledgement |
|
The implementation of BLIP relies on resources from <a href="https://github.com/salesforce/ALBEF">ALBEF</a>, <a href="https://github.com/huggingface/transformers">Huggingface Transformers</a>, and <a href="https://github.com/rwightman/pytorch-image-models/tree/master/timm">timm</a>. We thank the original authors for their open-sourcing. |
|
|