File size: 4,791 Bytes
cc5b602
6f619d7
d381360
6386510
3eed0af
51a7d9e
3eed0af
6386510
5511411
51a7d9e
d381360
e6367a7
c588d42
 
2f00662
c588d42
2f00662
c588d42
51a7d9e
6386510
bd34f0b
5511411
bd34f0b
 
51a7d9e
6386510
51a7d9e
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
da59244
d381360
3eed0af
d381360
f6cebe3
 
 
 
8da4de5
c95f150
3eed0af
d381360
4ed884e
 
8b61c24
 
1d4c579
5869f2f
4ed884e
 
3eed0af
4ed884e
 
 
e59867b
61f72c5
e59867b
 
 
 
 
3eed0af
 
 
cc17248
9c6afad
 
 
 
 
 
3eed0af
e59867b
3eed0af
7c59d2e
3eed0af
4ed884e
c4592e6
 
 
3eed0af
5511411
15d5921
285cc01
27dc368
3eed0af
b64165b
3eed0af
 
 
d6a2aad
c46b9e7
3eed0af
 
 
6386510
51a7d9e
82b38de
51a7d9e
 
 
 
 
 
 
 
61f72c5
 
 
 
 
51a7d9e
 
 
 
5d82ad0
51a7d9e
 
 
 
 
5511411
51a7d9e
61f72c5
b64165b
51a7d9e
 
bd34f0b
 
 
 
4ed884e
bd34f0b
 
 
 
 
5d82ad0
bd34f0b
5d82ad0
bd34f0b
 
 
 
 
 
 
5d82ad0
bd34f0b
 
 
51a7d9e
 
 
 
8da4de5
 
51a7d9e
3fb77c6
51a7d9e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread

MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")

TITLE = """
<h1><center>EXAONE-3.0-7.8B-Instruct</center></h1>
<center>
<p>The model is licensed under EXAONE AI Model License Agreement 1.0 - NC</p>
</center>
"""

PLACEHOLDER = """
<center>
<p>EXAONE-3.0-7.8B-Instruct is a pre-trained and instruction-tuned bilingual (English and Korean) generative model with 7.8 billion parameters</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
    ignore_mismatched_sizes=True)

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.3, 
    max_new_tokens: int = 256, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    inputs = tokenizer.apply_chat_template(
        conversation,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
        streamer=streamer,
        pad_token_id = 0,
        eos_token_id = 361 # 361
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

            
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="โš™๏ธ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are EXAONE model from LG AI Research, a helpful assistant.",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=1,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=50,
                step=1,
                value=50,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Explain who you are"],
            ["๋„ˆ์˜ ์†Œ์›์„ ๋งํ•ด๋ด"],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()