Spaces:
Sleeping
Sleeping
File size: 4,791 Bytes
cc5b602 6f619d7 d381360 6386510 3eed0af 51a7d9e 3eed0af 6386510 5511411 51a7d9e d381360 e6367a7 c588d42 2f00662 c588d42 2f00662 c588d42 51a7d9e 6386510 bd34f0b 5511411 bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 d381360 3eed0af d381360 f6cebe3 8da4de5 c95f150 3eed0af d381360 4ed884e 8b61c24 1d4c579 5869f2f 4ed884e 3eed0af 4ed884e e59867b 61f72c5 e59867b 3eed0af cc17248 9c6afad 3eed0af e59867b 3eed0af 7c59d2e 3eed0af 4ed884e c4592e6 3eed0af 5511411 15d5921 285cc01 27dc368 3eed0af b64165b 3eed0af d6a2aad c46b9e7 3eed0af 6386510 51a7d9e 82b38de 51a7d9e 61f72c5 51a7d9e 5d82ad0 51a7d9e 5511411 51a7d9e 61f72c5 b64165b 51a7d9e bd34f0b 4ed884e bd34f0b 5d82ad0 bd34f0b 5d82ad0 bd34f0b 5d82ad0 bd34f0b 51a7d9e 8da4de5 51a7d9e 3fb77c6 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
TITLE = """
<h1><center>EXAONE-3.0-7.8B-Instruct</center></h1>
<center>
<p>The model is licensed under EXAONE AI Model License Agreement 1.0 - NC</p>
</center>
"""
PLACEHOLDER = """
<center>
<p>EXAONE-3.0-7.8B-Instruct is a pre-trained and instruction-tuned bilingual (English and Korean) generative model with 7.8 billion parameters</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
ignore_mismatched_sizes=True)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int = 256,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [{"role": "system", "content": system_prompt}]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
inputs = tokenizer.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
pad_token_id = 0,
eos_token_id = 361 # 361
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="โ๏ธ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=50,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Explain who you are"],
["๋์ ์์์ ๋งํด๋ด"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|