File size: 14,689 Bytes
78885f4
 
 
6d8c66f
 
78885f4
6d8c66f
 
78885f4
1de35a2
 
6d8c66f
 
3455431
6d8c66f
 
 
78885f4
6d8c66f
 
 
78885f4
6d8c66f
 
 
 
 
 
 
 
eac4c42
6d8c66f
1de35a2
 
6d8c66f
 
 
 
3455431
1de35a2
3455431
6d8c66f
3455431
6d8c66f
78885f4
cfe9514
 
 
78885f4
3455431
 
 
6d8c66f
 
 
1de35a2
ec3f86c
6d8c66f
 
 
 
 
1de35a2
6d8c66f
 
 
ec3f86c
8d1cff2
3455431
 
 
6d8c66f
ec3f86c
3455431
ec3f86c
 
3455431
 
6d8c66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78885f4
6d8c66f
1de35a2
6d8c66f
 
 
 
 
 
 
 
78885f4
6d8c66f
 
eac4c42
 
6d8c66f
1de35a2
6d8c66f
78885f4
6d8c66f
78885f4
6d8c66f
eac4c42
1de35a2
6d8c66f
78885f4
6d8c66f
78885f4
6d8c66f
 
 
 
eac4c42
 
 
 
 
 
78885f4
eac4c42
 
78885f4
eac4c42
 
6d8c66f
eac4c42
12d6a95
eac4c42
 
6d8c66f
 
 
 
 
eac4c42
6d8c66f
 
2cefcfb
6d8c66f
 
1cc8da5
6d8c66f
 
 
 
eac4c42
 
 
 
64cb00f
78885f4
eac4c42
 
 
78885f4
6d8c66f
eac4c42
78885f4
 
3455431
1de35a2
3455431
 
 
 
 
 
 
78885f4
3455431
78885f4
 
 
 
 
 
3455431
78885f4
 
 
 
 
 
6d8c66f
78885f4
 
6d8c66f
78885f4
 
6d8c66f
78885f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8c66f
78885f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8c66f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# Copyright (c) 2024 NVIDIA CORPORATION.
#   Licensed under the MIT license.

import spaces
import gradio as gr
import pandas as pd
import torch
import os

from meldataset import get_mel_spectrogram, MAX_WAV_VALUE
from bigvgan import BigVGAN
import librosa
import numpy as np
from utils import plot_spectrogram
import PIL

if torch.cuda.is_available():
    device = torch.device("cuda")
    torch.backends.cudnn.benchmark = False
    print(f"using GPU")
else:
    device = torch.device("cpu")
    print(f"using CPU")


def inference_gradio(input, model_choice):  # input is audio waveform in [T, channel]
    sr, audio = input  # unpack input to sampling rate and audio itself
    audio = np.transpose(audio)  # transpose to [channel, T] for librosa
    audio = audio / MAX_WAV_VALUE  # convert int16 to float range used by BigVGAN

    model = dict_model[model_choice]

    if sr != model.h.sampling_rate:  # convert audio to model's sampling rate
        audio = librosa.resample(audio, orig_sr=sr, target_sr=model.h.sampling_rate)
    if len(audio.shape) == 2:  # stereo
        audio = librosa.to_mono(audio)  # convert to mono if stereo
    audio = librosa.util.normalize(audio) * 0.95

    output, spec_gen = inference_model(
        audio, model
    )  # output is generated audio in ndarray, int16

    spec_plot_gen = plot_spectrogram(spec_gen)

    output_audio = (model.h.sampling_rate, output)  # tuple for gr.Audio output

    buffer = spec_plot_gen.canvas.buffer_rgba()
    output_image = PIL.Image.frombuffer(
        "RGBA", spec_plot_gen.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1
    )

    return output_audio, output_image


@spaces.GPU(duration=120)
def inference_model(audio_input, model):
    # load model to device
    model.to(device)

    with torch.inference_mode():
        wav = torch.FloatTensor(audio_input)
        # compute mel spectrogram from the ground truth audio
        spec_gt = get_mel_spectrogram(wav.unsqueeze(0), model.h).to(device)

        y_g_hat = model(spec_gt)

        audio_gen = y_g_hat.squeeze().cpu()
        spec_gen = get_mel_spectrogram(audio_gen.unsqueeze(0), model.h)
        audio_gen = audio_gen.numpy()  # [T], float [-1, 1]
        audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16")  # [T], int16
        spec_gen = spec_gen.squeeze().numpy()  # [C, T_frame]

    # unload to cpu
    model.to("cpu")
    # delete gpu tensor
    del spec_gt, y_g_hat

    return audio_gen, spec_gen


css = """
        a {
            color: inherit;
            text-decoration: underline;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #000000;
            background: #000000;
        }
        input[type='range'] {
            accent-color: #000000;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #generated_id{
            min-height: 700px
        }
        #setting_id{
          margin-bottom: 12px;
          text-align: center;
          font-weight: 900;
        }
"""

# Script for loading the models

LIST_MODEL_ID = [
    "bigvgan_24khz_100band",
    "bigvgan_base_24khz_100band",
    "bigvgan_22khz_80band",
    "bigvgan_base_22khz_80band",
    "bigvgan_v2_22khz_80band_256x",
    "bigvgan_v2_22khz_80band_fmax8k_256x",
    "bigvgan_v2_24khz_100band_256x",
    "bigvgan_v2_44khz_128band_256x",
    "bigvgan_v2_44khz_128band_512x",
]

dict_model = {}
dict_config = {}

for model_name in LIST_MODEL_ID:

    generator = BigVGAN.from_pretrained("nvidia/" + model_name)
    generator.remove_weight_norm()
    generator.eval()

    dict_model[model_name] = generator
    dict_config[model_name] = generator.h

# Script for Gradio UI

iface = gr.Blocks(css=css, title="BigVGAN - Demo")

with iface:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 900px; margin: 0 auto;">
            <div
            style="
                display: inline-flex;
                align-items: center;
                gap: 0.8rem;
                font-size: 1.5rem;
            "
            >
            <h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
                BigVGAN: A Universal Neural Vocoder with Large-Scale Training
            </h1>
            </div>
            <p style="margin-bottom: 10px; font-size: 125%">
            <a href="https://arxiv.org/abs/2206.04658">[Paper]</a>  <a href="https://github.com/NVIDIA/BigVGAN">[Code]</a>  <a href="https://bigvgan-demo.github.io/">[Demo]</a>  <a href="https://research.nvidia.com/labs/adlr/projects/bigvgan/">[Project page]</a>
            </p>
        </div>
        """
    )
    gr.HTML(
        """
        <div>
        <h3>News</h3>
        <p>[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:</p>
        <ul>
            <li>Custom CUDA kernel for inference: we provide a fused anti-aliased activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li>
            <li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li>
            <li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li>
            <li>We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio. See the table below for the link.</li>
        </ul>
        </div>
        """
    )
    gr.HTML(
        """
        <div>
        <h3>Model Overview</h3>
        BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs.
        <center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800" style="margin-top: 20px; border-radius: 15px;"></center>
        </div>
        """
    )
    with gr.Accordion("Input"):

        model_choice = gr.Dropdown(
            label="Select the model to use",
            info="The default model is bigvgan_v2_24khz_100band_256x",
            value="bigvgan_v2_24khz_100band_256x",
            choices=[m for m in LIST_MODEL_ID],
            interactive=True,
        )

        audio_input = gr.Audio(
            label="Input Audio", elem_id="input-audio", interactive=True
        )

    button = gr.Button("Submit")

    with gr.Accordion("Output"):
        with gr.Column():
            output_audio = gr.Audio(label="Output Audio", elem_id="output-audio")
            output_image = gr.Image(
                label="Output Mel Spectrogram", elem_id="output-image-gen"
            )

    button.click(
        inference_gradio,
        inputs=[audio_input, model_choice],
        outputs=[output_audio, output_image],
        concurrency_limit=10,
    )

    gr.Examples(
        [
            [
                os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"),
                "bigvgan_v2_24khz_100band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"),
                "bigvgan_v2_24khz_100band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"),
                "bigvgan_v2_24khz_100band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"),
                "bigvgan_v2_24khz_100band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"),
                "bigvgan_v2_24khz_100band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"),
                "bigvgan_v2_44khz_128band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"),
                "bigvgan_v2_44khz_128band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"),
                "bigvgan_v2_44khz_128band_256x",
            ],
            [
                os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"),
                "bigvgan_v2_44khz_128band_256x",
            ],
        ],
        fn=inference_gradio,
        inputs=[audio_input, model_choice],
        outputs=[output_audio, output_image],
    )

    # Define the data for the table
    data = {
        "Model Name": [
            "bigvgan_v2_44khz_128band_512x",
            "bigvgan_v2_44khz_128band_256x",
            "bigvgan_v2_24khz_100band_256x",
            "bigvgan_v2_22khz_80band_256x",
            "bigvgan_v2_22khz_80band_fmax8k_256x",
            "bigvgan_24khz_100band",
            "bigvgan_base_24khz_100band",
            "bigvgan_22khz_80band",
            "bigvgan_base_22khz_80band",
        ],
        "Sampling Rate": [
            "44 kHz",
            "44 kHz",
            "24 kHz",
            "22 kHz",
            "22 kHz",
            "24 kHz",
            "24 kHz",
            "22 kHz",
            "22 kHz",
        ],
        "Mel band": [128, 128, 100, 80, 80, 100, 100, 80, 80],
        "fmax": [22050, 22050, 12000, 11025, 8000, 12000, 12000, 8000, 8000],
        "Upsampling Ratio": [512, 256, 256, 256, 256, 256, 256, 256, 256],
        "Parameters": [
            "122M",
            "112M",
            "112M",
            "112M",
            "112M",
            "112M",
            "14M",
            "112M",
            "14M",
        ],
        "Dataset": [
            "Large-scale Compilation",
            "Large-scale Compilation",
            "Large-scale Compilation",
            "Large-scale Compilation",
            "Large-scale Compilation",
            "LibriTTS",
            "LibriTTS",
            "LibriTTS + VCTK + LJSpeech",
            "LibriTTS + VCTK + LJSpeech",
        ],
        "Fine-Tuned": ["No", "No", "No", "No", "No", "No", "No", "No", "No"],
    }

    base_url = "https://huggingface.co/nvidia/"

    df = pd.DataFrame(data)
    df["Model Name"] = df["Model Name"].apply(
        lambda x: f'<a href="{base_url}{x}">{x}</a>'
    )

    html_table = gr.HTML(
        f"""
        <div style="text-align: center;">
            {df.to_html(index=False, escape=False, classes='border="1" cellspacing="0" cellpadding="5" style="margin-left: auto; margin-right: auto;')}
            <p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p>
        </div>
        """
    )

iface.queue()
iface.launch()