|
|
|
|
|
|
|
import spaces |
|
import gradio as gr |
|
import pandas as pd |
|
import torch |
|
import os |
|
|
|
from meldataset import get_mel_spectrogram, MAX_WAV_VALUE |
|
from bigvgan import BigVGAN |
|
import librosa |
|
import numpy as np |
|
from utils import plot_spectrogram |
|
import PIL |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
torch.backends.cudnn.benchmark = False |
|
print(f"using GPU") |
|
else: |
|
device = torch.device("cpu") |
|
print(f"using CPU") |
|
|
|
|
|
def inference_gradio(input, model_choice): |
|
sr, audio = input |
|
audio = np.transpose(audio) |
|
audio = audio / MAX_WAV_VALUE |
|
|
|
model = dict_model[model_choice] |
|
|
|
if sr != model.h.sampling_rate: |
|
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.h.sampling_rate) |
|
if len(audio.shape) == 2: |
|
audio = librosa.to_mono(audio) |
|
audio = librosa.util.normalize(audio) * 0.95 |
|
|
|
output, spec_gen = inference_model( |
|
audio, model |
|
) |
|
|
|
spec_plot_gen = plot_spectrogram(spec_gen) |
|
|
|
output_audio = (model.h.sampling_rate, output) |
|
|
|
buffer = spec_plot_gen.canvas.buffer_rgba() |
|
output_image = PIL.Image.frombuffer( |
|
"RGBA", spec_plot_gen.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1 |
|
) |
|
|
|
return output_audio, output_image |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def inference_model(audio_input, model): |
|
|
|
model.to(device) |
|
|
|
with torch.inference_mode(): |
|
wav = torch.FloatTensor(audio_input) |
|
|
|
spec_gt = get_mel_spectrogram(wav.unsqueeze(0), model.h).to(device) |
|
|
|
y_g_hat = model(spec_gt) |
|
|
|
audio_gen = y_g_hat.squeeze().cpu() |
|
spec_gen = get_mel_spectrogram(audio_gen.unsqueeze(0), model.h) |
|
audio_gen = audio_gen.numpy() |
|
audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16") |
|
spec_gen = spec_gen.squeeze().numpy() |
|
|
|
|
|
model.to("cpu") |
|
|
|
del spec_gt, y_g_hat |
|
|
|
return audio_gen, spec_gen |
|
|
|
|
|
css = """ |
|
a { |
|
color: inherit; |
|
text-decoration: underline; |
|
} |
|
.gradio-container { |
|
font-family: 'IBM Plex Sans', sans-serif; |
|
} |
|
.gr-button { |
|
color: white; |
|
border-color: #000000; |
|
background: #000000; |
|
} |
|
input[type='range'] { |
|
accent-color: #000000; |
|
} |
|
.dark input[type='range'] { |
|
accent-color: #dfdfdf; |
|
} |
|
.container { |
|
max-width: 730px; |
|
margin: auto; |
|
padding-top: 1.5rem; |
|
} |
|
#gallery { |
|
min-height: 22rem; |
|
margin-bottom: 15px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
border-bottom-right-radius: .5rem !important; |
|
border-bottom-left-radius: .5rem !important; |
|
} |
|
#gallery>div>.h-full { |
|
min-height: 20rem; |
|
} |
|
.details:hover { |
|
text-decoration: underline; |
|
} |
|
.gr-button { |
|
white-space: nowrap; |
|
} |
|
.gr-button:focus { |
|
border-color: rgb(147 197 253 / var(--tw-border-opacity)); |
|
outline: none; |
|
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); |
|
--tw-border-opacity: 1; |
|
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); |
|
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); |
|
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); |
|
--tw-ring-opacity: .5; |
|
} |
|
#advanced-btn { |
|
font-size: .7rem !important; |
|
line-height: 19px; |
|
margin-top: 12px; |
|
margin-bottom: 12px; |
|
padding: 2px 8px; |
|
border-radius: 14px !important; |
|
} |
|
#advanced-options { |
|
margin-bottom: 20px; |
|
} |
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 35px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
.acknowledgments h4{ |
|
margin: 1.25em 0 .25em 0; |
|
font-weight: bold; |
|
font-size: 115%; |
|
} |
|
#container-advanced-btns{ |
|
display: flex; |
|
flex-wrap: wrap; |
|
justify-content: space-between; |
|
align-items: center; |
|
} |
|
.animate-spin { |
|
animation: spin 1s linear infinite; |
|
} |
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
#share-btn-container { |
|
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; |
|
margin-top: 10px; |
|
margin-left: auto; |
|
} |
|
#share-btn { |
|
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; |
|
} |
|
#share-btn * { |
|
all: unset; |
|
} |
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
.gr-form{ |
|
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; |
|
} |
|
#prompt-container{ |
|
gap: 0; |
|
} |
|
#generated_id{ |
|
min-height: 700px |
|
} |
|
#setting_id{ |
|
margin-bottom: 12px; |
|
text-align: center; |
|
font-weight: 900; |
|
} |
|
""" |
|
|
|
|
|
|
|
LIST_MODEL_ID = [ |
|
"bigvgan_24khz_100band", |
|
"bigvgan_base_24khz_100band", |
|
"bigvgan_22khz_80band", |
|
"bigvgan_base_22khz_80band", |
|
"bigvgan_v2_22khz_80band_256x", |
|
"bigvgan_v2_22khz_80band_fmax8k_256x", |
|
"bigvgan_v2_24khz_100band_256x", |
|
"bigvgan_v2_44khz_128band_256x", |
|
"bigvgan_v2_44khz_128band_512x", |
|
] |
|
|
|
dict_model = {} |
|
dict_config = {} |
|
|
|
for model_name in LIST_MODEL_ID: |
|
|
|
generator = BigVGAN.from_pretrained("nvidia/" + model_name) |
|
generator.remove_weight_norm() |
|
generator.eval() |
|
|
|
dict_model[model_name] = generator |
|
dict_config[model_name] = generator.h |
|
|
|
|
|
|
|
iface = gr.Blocks(css=css, title="BigVGAN - Demo") |
|
|
|
with iface: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 900px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.5rem; |
|
" |
|
> |
|
<h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;"> |
|
BigVGAN: A Universal Neural Vocoder with Large-Scale Training |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 125%"> |
|
<a href="https://arxiv.org/abs/2206.04658">[Paper]</a> <a href="https://github.com/NVIDIA/BigVGAN">[Code]</a> <a href="https://bigvgan-demo.github.io/">[Demo]</a> <a href="https://research.nvidia.com/labs/adlr/projects/bigvgan/">[Project page]</a> |
|
</p> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
<div> |
|
<h3>News</h3> |
|
<p>[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:</p> |
|
<ul> |
|
<li>Custom CUDA kernel for inference: we provide a fused anti-aliased activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li> |
|
<li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li> |
|
<li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li> |
|
<li>We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio. See the table below for the link.</li> |
|
</ul> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
<div> |
|
<h3>Model Overview</h3> |
|
BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs. |
|
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800" style="margin-top: 20px; border-radius: 15px;"></center> |
|
</div> |
|
""" |
|
) |
|
with gr.Accordion("Input"): |
|
|
|
model_choice = gr.Dropdown( |
|
label="Select the model to use", |
|
info="The default model is bigvgan_v2_24khz_100band_256x", |
|
value="bigvgan_v2_24khz_100band_256x", |
|
choices=[m for m in LIST_MODEL_ID], |
|
interactive=True, |
|
) |
|
|
|
audio_input = gr.Audio( |
|
label="Input Audio", elem_id="input-audio", interactive=True |
|
) |
|
|
|
button = gr.Button("Submit") |
|
|
|
with gr.Accordion("Output"): |
|
with gr.Column(): |
|
output_audio = gr.Audio(label="Output Audio", elem_id="output-audio") |
|
output_image = gr.Image( |
|
label="Output Mel Spectrogram", elem_id="output-image-gen" |
|
) |
|
|
|
button.click( |
|
inference_gradio, |
|
inputs=[audio_input, model_choice], |
|
outputs=[output_audio, output_image], |
|
concurrency_limit=10, |
|
) |
|
|
|
gr.Examples( |
|
[ |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"), |
|
"bigvgan_v2_24khz_100band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"), |
|
"bigvgan_v2_24khz_100band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"), |
|
"bigvgan_v2_24khz_100band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"), |
|
"bigvgan_v2_24khz_100band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"), |
|
"bigvgan_v2_24khz_100band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"), |
|
"bigvgan_v2_44khz_128band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"), |
|
"bigvgan_v2_44khz_128band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"), |
|
"bigvgan_v2_44khz_128band_256x", |
|
], |
|
[ |
|
os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"), |
|
"bigvgan_v2_44khz_128band_256x", |
|
], |
|
], |
|
fn=inference_gradio, |
|
inputs=[audio_input, model_choice], |
|
outputs=[output_audio, output_image], |
|
) |
|
|
|
|
|
data = { |
|
"Model Name": [ |
|
"bigvgan_v2_44khz_128band_512x", |
|
"bigvgan_v2_44khz_128band_256x", |
|
"bigvgan_v2_24khz_100band_256x", |
|
"bigvgan_v2_22khz_80band_256x", |
|
"bigvgan_v2_22khz_80band_fmax8k_256x", |
|
"bigvgan_24khz_100band", |
|
"bigvgan_base_24khz_100band", |
|
"bigvgan_22khz_80band", |
|
"bigvgan_base_22khz_80band", |
|
], |
|
"Sampling Rate": [ |
|
"44 kHz", |
|
"44 kHz", |
|
"24 kHz", |
|
"22 kHz", |
|
"22 kHz", |
|
"24 kHz", |
|
"24 kHz", |
|
"22 kHz", |
|
"22 kHz", |
|
], |
|
"Mel band": [128, 128, 100, 80, 80, 100, 100, 80, 80], |
|
"fmax": [22050, 22050, 12000, 11025, 8000, 12000, 12000, 8000, 8000], |
|
"Upsampling Ratio": [512, 256, 256, 256, 256, 256, 256, 256, 256], |
|
"Parameters": [ |
|
"122M", |
|
"112M", |
|
"112M", |
|
"112M", |
|
"112M", |
|
"112M", |
|
"14M", |
|
"112M", |
|
"14M", |
|
], |
|
"Dataset": [ |
|
"Large-scale Compilation", |
|
"Large-scale Compilation", |
|
"Large-scale Compilation", |
|
"Large-scale Compilation", |
|
"Large-scale Compilation", |
|
"LibriTTS", |
|
"LibriTTS", |
|
"LibriTTS + VCTK + LJSpeech", |
|
"LibriTTS + VCTK + LJSpeech", |
|
], |
|
"Fine-Tuned": ["No", "No", "No", "No", "No", "No", "No", "No", "No"], |
|
} |
|
|
|
base_url = "https://huggingface.co/nvidia/" |
|
|
|
df = pd.DataFrame(data) |
|
df["Model Name"] = df["Model Name"].apply( |
|
lambda x: f'<a href="{base_url}{x}">{x}</a>' |
|
) |
|
|
|
html_table = gr.HTML( |
|
f""" |
|
<div style="text-align: center;"> |
|
{df.to_html(index=False, escape=False, classes='border="1" cellspacing="0" cellpadding="5" style="margin-left: auto; margin-right: auto;')} |
|
<p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p> |
|
</div> |
|
""" |
|
) |
|
|
|
iface.queue() |
|
iface.launch() |
|
|