File size: 62,040 Bytes
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3e595
616dd44
 
 
 
 
 
9212458
616dd44
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d456da
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d456da
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3e595
5d456da
7af3abf
 
 
 
 
 
 
 
 
9212458
7b9da4a
 
 
 
 
 
 
 
 
22ae4b8
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3074d
5d456da
ab3e595
5d456da
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3e595
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616dd44
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ae428
 
 
 
 
7b9da4a
41ae428
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644334d
 
 
7b9da4a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
#!/usr/bin/env python3
import gradio as gr
import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata
import zipfile
from datetime import datetime
import contextlib
import ffmpeg
import torch
import yt_dlp


#######
# Function Sections
#
# System Checks
# Processing Paths and local file handling
# Video Download/Handling
# Audio Transcription
# Diarization
# Summarizers
# Main
#
#######

# To Do
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb
# Dark mode changes under gradio
#
# Changes made to app.py version:
# 1. Removal of video files after conversion -> check main function
# 2. Usage of/Hardcoding HF_TOKEN as token for API calls
# 3. Usage of HuggingFace for Inference
# 4. Other stuff I can't remember. Will eventually do a diff and document them.
# 



####
#
#       TL/DW: Too Long Didn't Watch
#
#  Project originally created by https://github.com/the-crypt-keeper
#  Modifications made by https://github.com/rmusser01
#  All credit to the original authors, I've just glued shit together.
#
#
# Usage:
#          Transcribe a single URL: 
#                python diarize.py https://example.com/video.mp4
#
#          Transcribe a single URL and have the resulting transcription summarized: 
#                python diarize.py https://example.com/video.mp4
#
#          Transcribe a list of files:
#               python diarize.py ./path/to/your/text_file.txt
#
#          Transcribe a local file:
#               python diarize.py /path/to/your/localfile.mp4
#
#          Transcribe a local file and have it summarized:
#               python diarize.py ./input.mp4 --api_name openai --api_key <your_openai_api_key>
#
#          Transcribe a list of files and have them all summarized:
#               python diarize.py path_to_your_text_file.txt --api_name <openai> --api_key <your_openai_api_key>
#
###


#######################
# Config loading
#

# Read configuration from file
config = configparser.ConfigParser()
config.read('config.txt')

# API Keys
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)

# Models
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
groq_model = config.get('API', 'groq_model', fallback='FIXME')
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
huggingface_model = config.get('API', 'huggingface_model', fallback='microsoft/Phi-3-mini-128k-instruct')

# Local-Models
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')

# Retrieve output paths from the configuration file
output_path = config.get('Paths', 'output_path', fallback='results')

# Retrieve processing choice from the configuration file
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')

# Log file
#logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)

#
#
#######################

# Dirty hack - sue me.
os.environ['KMP_DUPLICATE_LIB_OK']='True'

whisper_models = ["small", "medium", "small.en","medium.en"]
source_languages = {
    "en": "English",
    "zh": "Chinese",
    "de": "German",
    "es": "Spanish",
    "ru": "Russian",
    "ko": "Korean",
    "fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]




print(r"""_____  _          ________  _    _                                 
|_   _|| |        / /|  _  \| |  | | _                              
  | |  | |       / / | | | || |  | |(_)                             
  | |  | |      / /  | | | || |/\| |                                
  | |  | |____ / /   | |/ / \  /\  / _                              
  \_/  \_____//_/    |___/   \/  \/ (_)                             
                                                                    
                                                                    
 _                   _                                              
| |                 | |                                             
| |_   ___    ___   | |  ___   _ __    __ _                         
| __| / _ \  / _ \  | | / _ \ | '_ \  / _` |                        
| |_ | (_) || (_) | | || (_) || | | || (_| | _                      
 \__| \___/  \___/  |_| \___/ |_| |_| \__, |( )                     
                                       __/ ||/                      
                                      |___/                         
     _  _      _         _  _                      _          _     
    | |(_)    | |       ( )| |                    | |        | |    
  __| | _   __| | _ __  |/ | |_  __      __  __ _ | |_   ___ | |__  
 / _` || | / _` || '_ \    | __| \ \ /\ / / / _` || __| / __|| '_ \ 
| (_| || || (_| || | | |   | |_   \ V  V / | (_| || |_ | (__ | | | |
 \__,_||_| \__,_||_| |_|    \__|   \_/\_/   \__,_| \__| \___||_| |_|
""")

####################################################################################################################################
# System Checks
# 
# 

# Perform Platform Check
userOS = ""
def platform_check():
    global userOS
    if platform.system() == "Linux":
        print("Linux OS detected \n Running Linux appropriate commands")
        userOS = "Linux"
    elif platform.system() == "Windows":
        print("Windows OS detected \n Running Windows appropriate commands")
        userOS = "Windows"
    else:
        print("Other OS detected \n Maybe try running things manually?")
        exit()



# Check for NVIDIA GPU and CUDA availability
def cuda_check():
    global processing_choice
    try:
        nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode()
        if "NVIDIA-SMI" in nvidia_smi:
            print("NVIDIA GPU with CUDA is available.")
            processing_choice = "cuda"  # Set processing_choice to gpu if NVIDIA GPU with CUDA is available
        else:
            print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
            processing_choice = "cpu"  # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available
    except subprocess.CalledProcessError:
        print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
        processing_choice = "cpu"  # Set processing_choice to cpu if nvidia-smi command fails



# Ask user if they would like to use either their GPU or their CPU for transcription
def decide_cpugpu():
    global processing_choice
    processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ")
    if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"):
        print("You've chosen to use the GPU.")
        logging.debug("GPU is being used for processing")
        processing_choice = "cuda"
    elif processing_input.lower() == "cpu" or processing_input == "2":
        print("You've chosen to use the CPU.")
        logging.debug("CPU is being used for processing")
        processing_choice = "cpu"
    else:
        print("Invalid choice. Please select either GPU or CPU.")



# check for existence of ffmpeg
def check_ffmpeg():
    if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
        logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
        pass
    else:
        logging.debug("ffmpeg not installed on the local system/in local PATH")
        print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
        if userOS == "Windows":
            download_ffmpeg()
        elif userOS == "Linux":
            print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.")
        else:
            logging.debug("running an unsupported OS")
            print("You're running an unspported/Un-tested OS")
            exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
            if exit_script == "y" or "yes" or "1":
                exit()



# Download ffmpeg
def download_ffmpeg():
    user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
    if user_choice.lower() == 'yes' or 'y' or '1':
        print("Downloading ffmpeg")
        url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
        response = requests.get(url)
        
        if response.status_code == 200:
            print("Saving ffmpeg zip file")
            logging.debug("Saving ffmpeg zip file")
            zip_path = "ffmpeg-release-essentials.zip"
            with open(zip_path, 'wb') as file:
                file.write(response.content)
            
            logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
            print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
            with zipfile.ZipFile(zip_path, 'r') as zip_ref:
                ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"
                
                logging.debug("checking if the './Bin' folder exists, creating if not")
                bin_folder = "Bin"
                if not os.path.exists(bin_folder):
                    logging.debug("Creating a folder for './Bin', it didn't previously exist")
                    os.makedirs(bin_folder)
                
                logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
                zip_ref.extract(ffmpeg_path, path=bin_folder)
                
                logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
                src_path = os.path.join(bin_folder, ffmpeg_path)
                dst_path = os.path.join(bin_folder, "ffmpeg.exe")
                shutil.move(src_path, dst_path)
            
            logging.debug("Removing ffmpeg zip file")
            print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
            os.remove(zip_path)

            logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.")
            print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.")
        else:
            logging.error("Failed to download the zip file.")
            print("Failed to download the zip file.")
    else:
        logging.debug("User chose to not download ffmpeg")
        print("ffmpeg will not be downloaded.")

# 
# 
####################################################################################################################################







####################################################################################################################################
# Processing Paths and local file handling
# 
#

def read_paths_from_file(file_path):
    """ Reads a file containing URLs or local file paths and returns them as a list. """
    paths = []  # Initialize paths as an empty list
    with open(file_path, 'r') as file:
        for line in file:
            line = line.strip()
            if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')):
                logging.debug("line successfully imported from file and added to list to be transcribed")
                paths.append(line)
    return paths



def process_path(path):
    """ Decides whether the path is a URL or a local file and processes accordingly. """
    if path.startswith('http'):
        logging.debug("file is a URL")
        return get_youtube(path)  # For YouTube URLs, modify to download and extract info
    elif os.path.exists(path):
        logging.debug("File is a path")
        return process_local_file(path)  # For local files, define a function to handle them
    else:
        logging.error(f"Path does not exist: {path}")
        return None



# FIXME
def process_local_file(file_path):
    logging.info(f"Processing local file: {file_path}")
    title = normalize_title(os.path.splitext(os.path.basename(file_path))[0])
    info_dict = {'title': title}
    logging.debug(f"Creating {title} directory...")
    download_path = create_download_directory(title)
    logging.debug(f"Converting '{title}' to an audio file (wav).")
    audio_file = convert_to_wav(file_path)  # Assumes input files are videos needing audio extraction
    logging.debug(f"'{title}' succesfully converted to an audio file (wav).")   
    return download_path, info_dict, audio_file
# 
#
####################################################################################################################################






####################################################################################################################################
# Video Download/Handling
#

def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=True):
    if demo_mode:
        api_name = "huggingface"
        api_key = os.environ.get("HF_TOKEN")
        vad_filter = False
        download_video_flag = False
    
    try:
        results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag)
        
        if results:
            transcription_result = results[0]
            json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
            with open(json_file_path, 'r') as file:
                json_data = json.load(file)
            
            summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
            if os.path.exists(summary_file_path):
                return json_data, summary_file_path, json_file_path, summary_file_path
            else:
                return json_data, "Summary not available.", json_file_path, None
        else:
            return None, "No results found.", None, None
    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        return None, error_message, None, None



def create_download_directory(title):
    base_dir = "Results"
    # Remove characters that are illegal in Windows filenames and normalize
    safe_title = normalize_title(title)
    logging.debug(f"{title} successfully normalized")
    session_path = os.path.join(base_dir, safe_title)
    if not os.path.exists(session_path):
        os.makedirs(session_path, exist_ok=True)
        logging.debug(f"Created directory for downloaded video: {session_path}")
    else:
        logging.debug(f"Directory already exists for downloaded video: {session_path}")
    return session_path



def normalize_title(title):
    # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
    title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
    title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '')
    return title



def get_youtube(video_url):
    ydl_opts = {
        'format': 'bestaudio[ext=m4a]',
        'noplaylist': False,
        'quiet': True,
        'extract_flat': True
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        logging.debug("About to extract youtube info")
        info_dict = ydl.extract_info(video_url, download=False)
        logging.debug("Youtube info successfully extracted")
    return info_dict



def get_playlist_videos(playlist_url):
    ydl_opts = {
        'extract_flat': True,
        'skip_download': True,
        'quiet': True
    }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(playlist_url, download=False)

        if 'entries' in info:
            video_urls = [entry['url'] for entry in info['entries']]
            playlist_title = info['title']
            return video_urls, playlist_title
        else:
            print("No videos found in the playlist.")
            return [], None



def save_to_file(video_urls, filename):
    with open(filename, 'w') as file:
        file.write('\n'.join(video_urls))
    print(f"Video URLs saved to {filename}")



def download_video(video_url, download_path, info_dict, download_video_flag):
    logging.debug("About to normalize downloaded video title")
    title = normalize_title(info_dict['title'])
    
    if download_video_flag == False:
        file_path = os.path.join(download_path, f"{title}.m4a")
        ydl_opts = {
            'format': 'bestaudio[ext=m4a]',
            'outtmpl': file_path,
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            logging.debug("yt_dlp: About to download audio with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
        return file_path
    else:
        video_file_path = os.path.join(download_path, f"{title}_video.mp4")
        audio_file_path = os.path.join(download_path, f"{title}_audio.m4a")
        ydl_opts_video = {
            'format': 'bestvideo[ext=mp4]',
            'outtmpl': video_file_path,
        }
        ydl_opts_audio = {
            'format': 'bestaudio[ext=m4a]',
            'outtmpl': audio_file_path,
        }
        
        with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
            logging.debug("yt_dlp: About to download video with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
        
        with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
            logging.debug("yt_dlp: About to download audio with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")

        output_file_path = os.path.join(download_path, f"{title}.mp4")

        if userOS == "Windows":
            logging.debug("Running ffmpeg on Windows...")
            ffmpeg_command = [
                '.\\Bin\\ffmpeg.exe',
                '-i', video_file_path,
                '-i', audio_file_path,
                '-c:v', 'copy',
                '-c:a', 'copy',
                output_file_path
            ]
            subprocess.run(ffmpeg_command, check=True)
        elif userOS == "Linux":
            logging.debug("Running ffmpeg on Linux...")
            ffmpeg_command = [
                'ffmpeg',
                '-i', video_file_path,
                '-i', audio_file_path,
                '-c:v', 'copy',
                '-c:a', 'copy',
                output_file_path
            ]
            subprocess.run(ffmpeg_command, check=True)            
        else:
            logging.error("You shouldn't be here...")
            exit()
        os.remove(video_file_path)
        os.remove(audio_file_path)
        
        return output_file_path





#
#
####################################################################################################################################






####################################################################################################################################
# Audio Transcription
#
# Convert video .m4a into .wav using ffmpeg
#   ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
#       https://www.gyan.dev/ffmpeg/builds/
#

#os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
def convert_to_wav(video_file_path, offset=0):
    print("Starting conversion process of .m4a to .WAV")
    out_path = os.path.splitext(video_file_path)[0] + ".wav"

    try:
        if os.name == "nt":
            logging.debug("ffmpeg being ran on windows")

            if sys.platform.startswith('win'):
                ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
            else:
                ffmpeg_cmd = 'ffmpeg'  # Assume 'ffmpeg' is in PATH for non-Windows systems

            command = [
                ffmpeg_cmd,        # Assuming the working directory is correctly set where .\Bin exists
                "-ss", "00:00:00",          # Start at the beginning of the video
                "-i", video_file_path,
                "-ar", "16000",             # Audio sample rate
                "-ac", "1",                 # Number of audio channels
                "-c:a", "pcm_s16le",        # Audio codec
                out_path
            ]
            try:
                # Redirect stdin from null device to prevent ffmpeg from waiting for input
                with open(os.devnull, 'rb') as null_file:
                    result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
                if result.returncode == 0:
                    logging.info("FFmpeg executed successfully")
                    logging.debug("FFmpeg output: %s", result.stdout)
                else:
                    logging.error("Error in running FFmpeg")
                    logging.error("FFmpeg stderr: %s", result.stderr)
                    raise RuntimeError(f"FFmpeg error: {result.stderr}")
            except Exception as e:
                logging.error("Error occurred - ffmpeg doesn't like windows")
                raise RuntimeError("ffmpeg failed")
                exit()
        elif os.name == "posix":
            os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
        else:
            raise RuntimeError("Unsupported operating system")
        logging.info("Conversion to WAV completed: %s", out_path)
    except subprocess.CalledProcessError as e:
        logging.error("Error executing FFmpeg command: %s", str(e))
        raise RuntimeError("Error converting video file to WAV")
    except Exception as e:
        logging.error("Unexpected error occurred: %s", str(e))
        raise RuntimeError("Error converting video file to WAV")
    return out_path



# Transcribe .wav into .segments.json
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
    logging.info('Loading faster_whisper model: %s', whisper_model)
    from faster_whisper import WhisperModel
    model = WhisperModel(whisper_model, device=f"{processing_choice}")
    time_start = time.time()
    if audio_file_path is None:
        raise ValueError("No audio file provided")
    logging.info("Audio file path: %s", audio_file_path)

    try:
        _, file_ending = os.path.splitext(audio_file_path)
        out_file = audio_file_path.replace(file_ending, ".segments.json")
        if os.path.exists(out_file):
            logging.info("Segments file already exists: %s", out_file)
            with open(out_file) as f:
                segments = json.load(f)
            return segments
        
        logging.info('Starting transcription...')
        options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
        transcribe_options = dict(task="transcribe", **options)
        segments_raw, info = model.transcribe(audio_file_path, **transcribe_options)

        segments = []
        for segment_chunk in segments_raw:
            chunk = {
                "start": segment_chunk.start,
                "end": segment_chunk.end,
                "text": segment_chunk.text
            }
            logging.debug("Segment: %s", chunk)
            segments.append(chunk)
        logging.info("Transcription completed with faster_whisper")
        with open(out_file, 'w') as f:
            json.dump(segments, f, indent=2)
    except Exception as e:
        logging.error("Error transcribing audio: %s", str(e))
        raise RuntimeError("Error transcribing audio")
    return segments
#
#
####################################################################################################################################






####################################################################################################################################
# Diarization
#
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
# embedding_model = "pyannote/embedding", embedding_size=512
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
    """
    1. Generating speaker embeddings for each segments.
    2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
    """
    try:
        from pyannote.audio import Audio
        from pyannote.core import Segment
        from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
        import numpy as np
        import pandas as pd
        from sklearn.cluster import AgglomerativeClustering
        from sklearn.metrics import silhouette_score
        import tqdm
        import wave

        embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))


        _,file_ending = os.path.splitext(f'{video_file_path}')
        audio_file = video_file_path.replace(file_ending, ".wav")
        out_file = video_file_path.replace(file_ending, ".diarize.json")
        
        logging.debug("getting duration of audio file")
        with contextlib.closing(wave.open(audio_file,'r')) as f:
            frames = f.getnframes()
            rate = f.getframerate()
            duration = frames / float(rate)
        logging.debug("duration of audio file obtained")
        print(f"duration of audio file: {duration}")

        def segment_embedding(segment):
            logging.debug("Creating embedding")
            audio = Audio()
            start = segment["start"]
            end = segment["end"]

            # Enforcing a minimum segment length
            if end-start < 0.3:
                padding = 0.3-(end-start)
                start -= padding/2
                end += padding/2
                print('Padded segment because it was too short:',segment)

            # Whisper overshoots the end timestamp in the last segment
            end = min(duration, end)
            # clip audio and embed
            clip = Segment(start, end)
            waveform, sample_rate = audio.crop(audio_file, clip)
            return embedding_model(waveform[None])

        embeddings = np.zeros(shape=(len(segments), embedding_size))
        for i, segment in enumerate(tqdm.tqdm(segments)):
            embeddings[i] = segment_embedding(segment)
        embeddings = np.nan_to_num(embeddings)
        print(f'Embedding shape: {embeddings.shape}')

        if num_speakers == 0:
        # Find the best number of speakers
            score_num_speakers = {}
    
            for num_speakers in range(2, 10+1):
                clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
                score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
                score_num_speakers[num_speakers] = score
            best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
            print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
        else:
            best_num_speaker = num_speakers
            
        # Assign speaker label   
        clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
        labels = clustering.labels_
        for i in range(len(segments)):
            segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        with open(out_file,'w') as f:
            f.write(json.dumps(segments, indent=2))

        # Make CSV output
        def convert_time(secs):
            return datetime.timedelta(seconds=round(secs))
        
        objects = {
            'Start' : [],
            'End': [],
            'Speaker': [],
            'Text': []
        }
        text = ''
        for (i, segment) in enumerate(segments):
            if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
                objects['Start'].append(str(convert_time(segment["start"])))
                objects['Speaker'].append(segment["speaker"])
                if i != 0:
                    objects['End'].append(str(convert_time(segments[i - 1]["end"])))
                    objects['Text'].append(text)
                    text = ''
            text += segment["text"] + ' '
        objects['End'].append(str(convert_time(segments[i - 1]["end"])))
        objects['Text'].append(text)
        
        save_path = video_file_path.replace(file_ending, ".csv")
        df_results = pd.DataFrame(objects)
        df_results.to_csv(save_path)
        return df_results, save_path
    
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)
#
#
####################################################################################################################################






####################################################################################################################################
#Summarizers
#
#

# Summarize with OpenAI ChatGPT
def extract_text_from_segments(segments):
    logging.debug(f"openai: extracting text from {segments}")
    text = ' '.join([segment['text'] for segment in segments])
    return text



def summarize_with_openai(api_key, file_path, model):
    try:
        logging.debug("openai: Loading json data for summarization")
        with open(file_path, 'r') as file:
            segments = json.load(file)
        
        logging.debug("openai: Extracting text from the segments")
        text = extract_text_from_segments(segments)

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }
        
        logging.debug("openai: Preparing data + prompt for submittal")
        prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
        data = {
            "model": model,
            "messages": [
                {
                    "role": "system",
                    "content": "You are a professional summarizer."
                },
                {
                    "role": "user",
                    "content": prompt_text
                }
            ],
            "max_tokens": 4096,  # Adjust tokens as needed
            "temperature": 0.7
        }
        logging.debug("openai: Posting request")
        response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
        
        if response.status_code == 200:
            summary = response.json()['choices'][0]['message']['content'].strip()
            logging.debug("openai: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.debug("openai: Summarization failed")
            print("Failed to process summary:", response.text)
            return None
    except Exception as e:
        logging.debug("openai: Error in processing: %s", str(e))
        print("Error occurred while processing summary with openai:", str(e))
        return None



def summarize_with_claude(api_key, file_path, model):
    try:
        logging.debug("anthropic: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)
        
        logging.debug("anthropic: Extracting text from the segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'x-api-key': api_key,
            'anthropic-version': '2023-06-01',
            'Content-Type': 'application/json'
        }
        
        logging.debug("anthropic: Prepping data + prompt for submittal")
        user_message = {
            "role": "user",
            "content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
        }

        data = {
            "model": model,
            "max_tokens": 4096,            # max _possible_ tokens to return
            "messages": [user_message],
            "stop_sequences": ["\n\nHuman:"],
            "temperature": 0.7,
            "top_k": 0,
            "top_p": 1.0,
            "metadata": {
                "user_id": "example_user_id",
            },
            "stream": False,
            "system": "You are a professional summarizer."
        }
        
        logging.debug("anthropic: Posting request to API")
        response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
        
        # Check if the status code indicates success
        if response.status_code == 200:
            logging.debug("anthropic: Post submittal successful")
            response_data = response.json()
            try:
                summary = response_data['content'][0]['text'].strip()
                logging.debug("anthropic: Summarization succesful")
                print("Summary processed successfully.")
                return summary
            except (IndexError, KeyError) as e:
                logging.debug("anthropic: Unexpected data in response")
                print("Unexpected response format from Claude API:", response.text)
                return None
        elif response.status_code == 500:  # Handle internal server error specifically
            logging.debug("anthropic: Internal server error")
            print("Internal server error from API. Retrying may be necessary.")
            return None
        else:
            logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
            print(f"Failed to process summary, status code {response.status_code}: {response.text}")
            return None

    except Exception as e:
        logging.debug("anthropic: Error in processing: %s", str(e))
        print("Error occurred while processing summary with anthropic:", str(e))
        return None



# Summarize with Cohere
def summarize_with_cohere(api_key, file_path, model):
    try:
        logging.basicConfig(level=logging.DEBUG)
        logging.debug("cohere: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"cohere: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        }

        prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
        data = {
            "chat_history": [
                {"role": "USER", "message": prompt_text}
            ],
            "message": "Please provide a summary.",
            "model": model,
            "connectors": [{"id": "web-search"}]
        }

        logging.debug("cohere: Submitting request to API endpoint")
        print("cohere: Submitting request to API endpoint")
        response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'text' in response_data:
                summary = response_data['text'].strip()
                logging.debug("cohere: Summarization successful")
                print("Summary processed successfully.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}")
            print(f"Failed to process summary, status code {response.status_code}: {response.text}")
            return f"cohere: API request failed: {response.text}"

    except Exception as e:
        logging.error("cohere: Error in processing: %s", str(e))
        return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"



# https://console.groq.com/docs/quickstart
def summarize_with_groq(api_key, file_path, model):
    try:
        logging.debug("groq: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"groq: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }

        prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
        data = {
            "messages": [
                {
                    "role": "user",
                    "content": prompt_text
                }
            ],
            "model": model
        }

        logging.debug("groq: Submitting request to API endpoint")
        print("groq: Submitting request to API endpoint")
        response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)

        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("groq: Summarization successful")
                print("Summarization successful.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
            return f"groq: API request failed: {response.text}"

    except Exception as e:
        logging.error("groq: Error in processing: %s", str(e))
        return f"groq: Error occurred while processing summary with groq: {str(e)}"


#################################
#
# Local Summarization

def summarize_with_llama(api_url, file_path, token):
    try:
        logging.debug("llama: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"llama: Extracting text from segments file")
        text = extract_text_from_segments(segments)  # Define this function to extract text properly

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if len(token)>5:
            headers['Authorization'] = f'Bearer {token}'


        prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
        data = {
            "prompt": prompt_text
        }

        logging.debug("llama: Submitting request to API endpoint")
        print("llama: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            #if 'X' in response_data:
            logging.debug(response_data)
            summary = response_data['content'].strip()
            logging.debug("llama: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}")
            return f"llama: API request failed: {response.text}"

    except Exception as e:
        logging.error("llama: Error in processing: %s", str(e))
        return f"llama: Error occurred while processing summary with llama: {str(e)}"



# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(api_url, file_path):
    try:
        logging.debug("kobold: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"kobold: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        # FIXME
        prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text."
        logging.debug(prompt_text)
        # Values literally c/p from the api docs....
        data = {
            "max_context_length": 8096,
            "max_length": 4096,
            "prompt": prompt_text,
        }

        logging.debug("kobold: Submitting request to API endpoint")
        print("kobold: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("kobold: API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'results' in response_data and len(response_data['results']) > 0:
                summary = response_data['results'][0]['text'].strip()
                logging.debug("kobold: Summarization successful")
                print("Summarization successful.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
            return f"kobold: API request failed: {response.text}"

    except Exception as e:
        logging.error("kobold: Error in processing: %s", str(e))
        return f"kobold: Error occurred while processing summary with kobold: {str(e)}"



# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(api_url, file_path):
    try:
        logging.debug("ooba: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"ooba: Extracting text from segments file\n\n\n")
        text = extract_text_from_segments(segments)
        logging.debug(f"ooba: Finished extracting text from segments file")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite."
        # prompt_text += f"\n\n{text}"  # Uncomment this line if you want to include the text variable
        prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."

        data =  {
            "mode": "chat",
            "character": "Example",
            "messages": [{"role": "user", "content": prompt_text}]
        }

        logging.debug("ooba: Submitting request to API endpoint")
        print("ooba: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data, verify=False)
        logging.debug("ooba: API Response Data: %s", response)

        if response.status_code == 200:
            response_data = response.json()
            summary = response.json()['choices'][0]['message']['content']
            logging.debug("ooba: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
            return f"ooba: API request failed with status code {response.status_code}: {response.text}"

    except Exception as e:
        logging.error("ooba: Error in processing: %s", str(e))
        return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"



def save_summary_to_file(summary, file_path):
    summary_file_path = file_path.replace('.segments.json', '_summary.txt')
    logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
    with open(summary_file_path, 'w') as file:
        file.write(summary)
    logging.info(f"Summary saved to file: {summary_file_path}")

#
#
####################################################################################################################################






####################################################################################################################################
# Gradio UI
#

# Only to be used when configured with Gradio for HF Space
def summarize_with_huggingface(api_key, file_path):
    logging.debug(f"huggingface: Summarization process starting...")
    if api_key == "":
        api_key = os.environ.get("HF_TOKEN")
    try:
        logging.debug("huggingface: Loading json data for summarization")
        with open(file_path, 'r') as file:
            segments = json.load(file)
        
        logging.debug("huggingface: Extracting text from the segments")
        text = ' '.join([segment['text'] for segment in segments])

        api_key = os.environ.get('HF_TOKEN')
        headers = {
            "Authorization": f"Bearer {api_key}"
        }
        model = "microsoft/Phi-3-mini-128k-instruct"
        API_URL = f"https://api-inference.huggingface.co/models/{model}"
        data = {
            "inputs": text,
            "parameters": {"max_length": 512, "min_length": 100}  # You can adjust max_length and min_length as needed
        }
        
        logging.debug("huggingface: Submitting request...")
        response = requests.post(API_URL, headers=headers, json=data)
        
        if response.status_code == 200:
            summary = response.json()[0]['summary_text']
            logging.debug("huggingface: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}")
            return f"Failed to process summary, status code {response.status_code}: {response.text}"
    except Exception as e:
        logging.error("huggingface: Error in processing: %s", str(e))
        print(f"Error occurred while processing summary with huggingface: {str(e)}")
        return None



    def same_auth(username, password):
        return username == password



def launch_ui(demo_mode=False):
    def process_transcription(json_data):
        if json_data:
            return "\n".join([item["text"] for item in json_data])
        else:
            return ""

 #    dropdown.change(None, dropdown, None, _js=js)
#    toggle_dark.click(
#        None,
#        _js="""
#        () => {
#            document.body.classList.toggle('dark');
#            document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)'
#        }
#        """,
#    )
    
    inputs = [
        gr.components.Textbox(label="URL"),
        gr.components.Number(value=2, label="Number of Speakers"),
        gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
        gr.components.Number(value=0, label="Offset")
    ]

    if not demo_mode:
        inputs.extend([
            gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="huggingface", label="API Name"),
            gr.components.Textbox(label="API Key"),
            gr.components.Checkbox(value=False, label="VAD Filter"),
            gr.components.Checkbox(value=False, label="Download Video")
        ])

    iface = gr.Interface(
        fn=lambda *args: process_url(*args, demo_mode=demo_mode),
        inputs=inputs,
        outputs=[
            gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10),
            gr.components.Textbox(label="Summary"),
            gr.components.File(label="Download Transcription as JSON"),
            gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None)
        ],
        title="Video Transcription and Summarization",
        description="Submit a video URL for transcription and summarization.",
        allow_flagging="never",
        theme="bethecloud/storj_theme"
        # FIXME - Figure out how to enable dark mode...
        # other themes: https://huggingface.co/spaces/gradio/theme-gallery
    )

    iface.launch(share=True)

#
#
#####################################################################################################################################







####################################################################################################################################
# Main()
#
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False, demo_mode=False):
    if input_path is None and args.user_interface:
        return []
    start_time = time.monotonic()
    paths = []  # Initialize paths as an empty list
    if os.path.isfile(input_path) and input_path.endswith('.txt'):
        logging.debug("MAIN: User passed in a text file, processing text file...")
        paths = read_paths_from_file(input_path)
    elif os.path.exists(input_path):
        logging.debug("MAIN: Local file path detected")
        paths = [input_path]
    elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
        logging.debug("MAIN: YouTube playlist detected")
        print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""")
        return
    else:
        paths = [input_path]
    results = []

    for path in paths:
        try:
            if path.startswith('http'):
                logging.debug("MAIN: URL Detected")
                info_dict = get_youtube(path)
                if info_dict:
                    logging.debug("MAIN: Creating path for video file...")
                    download_path = create_download_directory(info_dict['title'])
                    logging.debug("MAIN: Path created successfully")
                    logging.debug("MAIN: Downloading video from yt_dlp...")
                    video_path = download_video(path, download_path, info_dict, download_video_flag)
                    logging.debug("MAIN: Video downloaded successfully")
                    logging.debug("MAIN: Converting video file to WAV...")
                    audio_file = convert_to_wav(video_path, offset)
                    logging.debug("MAIN: Audio file converted succesfully")
            else:
                if os.path.exists(path):
                    logging.debug("MAIN: Local file path detected")
                    download_path, info_dict, audio_file = process_local_file(path)
                else:
                    logging.error(f"File does not exist: {path}")
                    continue

            if info_dict:
                logging.debug("MAIN: Creating transcription file from WAV")
                segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter)
                transcription_result = {
                    'video_path': path,
                    'audio_file': audio_file,
                    'transcription': segments
                }
                results.append(transcription_result)
                logging.info(f"Transcription complete: {audio_file}")

                if path.startswith('http'):
                    # Delete the downloaded video file
                    os.remove(video_path)
                    logging.info(f"Deleted downloaded video file: {video_path}")

                # Perform summarization based on the specified API
                if api_name and api_key:
                    logging.debug(f"MAIN: Summarization being performed by {api_name}")
                    json_file_path = audio_file.replace('.wav', '.segments.json')
                    if api_name.lower() == 'openai':
                        api_key = openai_api_key
                        try:
                            logging.debug(f"MAIN: trying to summarize with openAI")                            
                            summary = summarize_with_openai(api_key, json_file_path, openai_model)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'anthropic':
                        api_key = anthropic_api_key
                        try:
                            logging.debug(f"MAIN: Trying to summarize with anthropic")
                            summary = summarize_with_claude(api_key, json_file_path, anthropic_model)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'cohere':
                        api_key = cohere_api_key
                        try:
                            logging.debug(f"MAIN: Trying to summarize with cohere")
                            summary = summarize_with_cohere(api_key, json_file_path, cohere_model)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'groq':
                        api_key = groq_api_key
                        try:
                            logging.debug(f"MAIN: Trying to summarize with Groq")
                            summary = summarize_with_groq(api_key, json_file_path, groq_model)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'llama':
                        token = llama_api_key
                        llama_ip = llama_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
                            summary = summarize_with_llama(llama_ip, json_file_path, token)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'kobold':
                        token = kobold_api_key
                        kobold_ip = kobold_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
                            summary = summarize_with_kobold(kobold_ip, json_file_path)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    elif api_name.lower() == 'ooba':
                        token = ooba_api_key
                        ooba_ip = ooba_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with oobabooga")
                            summary = summarize_with_oobabooga(ooba_ip, json_file_path)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "
                    if api_name.lower() == 'huggingface':
                        api_key = huggingface_api_key
                        try:
                            logging.debug(f"MAIN: Trying to summarize with huggingface")
                            summarize_with_huggingface(api_key, json_file_path)
                        except requests.exceptions.ConnectionError:
                            r.status_code = "Connection: "

                    else:
                        logging.warning(f"Unsupported API: {api_name}")
                        summary = None

                    if summary:
                        transcription_result['summary'] = summary
                        logging.info(f"Summary generated using {api_name} API")
                        save_summary_to_file(summary, json_file_path)
                    else:
                        logging.warning(f"Failed to generate summary using {api_name} API")
                else:
                    logging.info("No API specified. Summarization will not be performed")
        except Exception as e:
            logging.error(f"Error processing path: {path}")
            logging.error(str(e))
    end_time = time.monotonic()
    #print("Total program execution time: " + timedelta(seconds=end_time - start_time))

    return results



if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Transcribe and summarize videos.')
    parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
    parser.add_argument('-v','--video',  action='store_true', help='Download the video instead of just the audio')
    parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
    parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
    parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
    parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)')
    parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
    parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
    parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
    parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
    parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
    #parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
    args = parser.parse_args()
    
    print(f"Is CUDA available: {torch.cuda.is_available()}")
    # True
    print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
    # Tesla T4

    
    # Since this is running in HF....
    args.user_interface = True
    if args.user_interface:
        launch_ui(demo_mode=args.demo_mode)
    else:
        if not args.input_path:
            parser.print_help()
            sys.exit(1)

        logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')

        logging.info('Starting the transcription and summarization process.')
        logging.info(f'Input path: {args.input_path}')
        logging.info(f'API Name: {args.api_name}')
        logging.debug(f'API Key: {args.api_key}') # ehhhhh
        logging.info(f'Number of speakers: {args.num_speakers}')
        logging.info(f'Whisper model: {args.whisper_model}')
        logging.info(f'Offset: {args.offset}')
        logging.info(f'VAD filter: {args.vad_filter}')
        logging.info(f'Log Level: {args.log_level}') #lol

        if args.api_name and args.api_key:
            logging.info(f'API: {args.api_name}')
            logging.info('Summarization will be performed.')
        else:
            logging.info('No API specified. Summarization will not be performed.')

        logging.debug("Platform check being performed...")
        platform_check()
        logging.debug("CUDA check being performed...")
        cuda_check()
        logging.debug("ffmpeg check being performed...")
        check_ffmpeg()

        # Hey, we're in HuggingFace
        launch_ui(demo_mode=args.demo_mode)
        
        try:
            results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video)
            logging.info('Transcription process completed.')
        except Exception as e:
            logging.error('An error occurred during the transcription process.')
            logging.error(str(e))
            sys.exit(1)