File size: 10,784 Bytes
45e1f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfbac61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# ChromaDB_Library.py
# Description: Functions for managing embeddings in ChromaDB
#
# Imports:
import logging
from typing import List, Dict, Any
# 3rd-Party Imports:
import chromadb
from chromadb import Settings
from itertools import islice
#
# Local Imports:
from App_Function_Libraries.Chunk_Lib import chunk_for_embedding, chunk_options
from App_Function_Libraries.DB.SQLite_DB import process_chunks
from App_Function_Libraries.RAG.Embeddings_Create import create_embeddings_batch
# FIXME - related to Chunking
from App_Function_Libraries.RAG.Embeddings_Create import create_embedding
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize
from App_Function_Libraries.Utils.Utils import get_database_path, ensure_directory_exists, \
    load_comprehensive_config
#
#######################################################################################################################
#
# Config Settings for ChromaDB Functions
#
# FIXME - Refactor so that all globals are set in summarize.py
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
#
# Load config
config = load_comprehensive_config()
#
# ChromaDB settings
chroma_db_path = config.get('Database', 'chroma_db_path', fallback=get_database_path('chroma_db'))
ensure_directory_exists(chroma_db_path)
chroma_client = chromadb.PersistentClient(path=chroma_db_path, settings=Settings(anonymized_telemetry=False))
#
# Embedding settings
embedding_provider = config.get('Embeddings', 'embedding_provider', fallback='openai')
embedding_model = config.get('Embeddings', 'embedding_model', fallback='text-embedding-3-small')
embedding_api_key = config.get('Embeddings', 'api_key', fallback='')
embedding_api_url = config.get('Embeddings', 'api_url', fallback='')
#
# End of Config Settings
#######################################################################################################################
#
# Functions:

def batched(iterable, n):
    "Batch data into lists of length n. The last batch may be shorter."
    it = iter(iterable)
    while True:
        batch = list(islice(it, n))
        if not batch:
            return
        yield batch


# FIXME - Fix summarization of entire document/storign in chunk issue
# FIXME - update all uses to reflect 'api_name' parameter
def process_and_store_content(database, content: str, collection_name: str, media_id: int, file_name: str,

                              create_embeddings: bool = False, create_summary: bool = False, api_name: str = None,

                              chunk_options: Dict = None, embedding_provider: str = None,

                              embedding_model: str = None, embedding_api_url: str = None):
    try:
        logger.info(f"Processing content for media_id {media_id} in collection {collection_name}")

        full_summary = None
        if create_summary and api_name:
            full_summary = summarize(content, None, api_name, None, None, None)

        chunks = chunk_for_embedding(content, file_name, full_summary, chunk_options)

        # Process chunks synchronously
        process_chunks(database, chunks, media_id)

        if create_embeddings:
            texts = [chunk['text'] for chunk in chunks]
            embeddings = create_embeddings_batch(texts, embedding_provider, embedding_model, embedding_api_url)
            ids = [f"{media_id}_chunk_{i}" for i in range(1, len(chunks) + 1)]
            metadatas = [{
                "media_id": str(media_id),
                "chunk_index": i,
                "total_chunks": len(chunks),
                "start_index": int(chunk['metadata']['start_index']),
                "end_index": int(chunk['metadata']['end_index']),
                "file_name": str(file_name),
                "relative_position": float(chunk['metadata']['relative_position'])
            } for i, chunk in enumerate(chunks, 1)]

            store_in_chroma(collection_name, texts, embeddings, ids, metadatas)

        # Update full-text search index
        database.execute_query(
            "INSERT OR REPLACE INTO media_fts (rowid, title, content) SELECT id, title, content FROM Media WHERE id = ?",
            (media_id,)
        )

        logger.info(f"Finished processing and storing content for media_id {media_id}")

    except Exception as e:
        logger.error(f"Error in process_and_store_content for media_id {media_id}: {str(e)}")
        raise

# Usage example:
# process_and_store_content(db, content, "my_collection", 1, "example.txt", create_embeddings=True, create_summary=True, api_name="gpt-3.5-turbo")


def check_embedding_status(selected_item, item_mapping):
    if not selected_item:
        return "Please select an item", ""

    try:
        item_id = item_mapping.get(selected_item)
        if item_id is None:
            return f"Invalid item selected: {selected_item}", ""

        item_title = selected_item.rsplit(' (', 1)[0]
        collection = chroma_client.get_or_create_collection(name="all_content_embeddings")

        result = collection.get(ids=[f"doc_{item_id}"], include=["embeddings", "metadatas"])
        logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}")

        if not result['ids']:
            return f"No embedding found for item '{item_title}' (ID: {item_id})", ""

        if not result['embeddings'] or not result['embeddings'][0]:
            return f"Embedding data missing for item '{item_title}' (ID: {item_id})", ""

        embedding = result['embeddings'][0]
        metadata = result['metadatas'][0] if result['metadatas'] else {}
        embedding_preview = str(embedding[:50])
        status = f"Embedding exists for item '{item_title}' (ID: {item_id})"
        return status, f"First 50 elements of embedding:\n{embedding_preview}\n\nMetadata: {metadata}"

    except Exception as e:
        logging.error(f"Error in check_embedding_status: {str(e)}")
        return f"Error processing item: {selected_item}. Details: {str(e)}", ""

def reset_chroma_collection(collection_name: str):
    try:
        chroma_client.delete_collection(collection_name)
        chroma_client.create_collection(collection_name)
        logging.info(f"Reset ChromaDB collection: {collection_name}")
    except Exception as e:
        logging.error(f"Error resetting ChromaDB collection: {str(e)}")


def store_in_chroma(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str], metadatas: List[Dict[str, Any]]):
    try:
        collection = chroma_client.get_or_create_collection(name=collection_name)

        # Log the inputs for debugging
        logging.debug(f"Storing in ChromaDB - Collection: {collection_name}")
        logging.debug(f"Texts (first 100 chars): {texts[0][:100]}...")
        logging.debug(f"Embeddings (first 5 values): {embeddings[0][:5]}")
        logging.debug(f"IDs: {ids}")
        logging.debug(f"Metadatas: {metadatas}")

        # Use upsert instead of add/update
        collection.upsert(
            documents=texts,
            embeddings=embeddings,
            ids=ids,
            metadatas=metadatas
        )

        # Verify storage
        for doc_id in ids:
            result = collection.get(ids=[doc_id], include=["embeddings"])
            if not result['embeddings'] or result['embeddings'][0] is None:
                logging.error(f"Failed to store embedding for {doc_id}")
            else:
                logging.info(f"Embedding stored successfully for {doc_id}")

    except Exception as e:
        logging.error(f"Error storing embeddings in ChromaDB: {str(e)}")
        raise


# Function to perform vector search using ChromaDB + Keywords from the media_db
def vector_search(collection_name: str, query: str, k: int = 10) -> List[Dict[str, Any]]:
    try:
        query_embedding = create_embedding(query, embedding_provider, embedding_model, embedding_api_url)
        collection = chroma_client.get_collection(name=collection_name)
        results = collection.query(
            query_embeddings=[query_embedding],
            n_results=k,
            include=["documents", "metadatas"]
        )
        return [{"content": doc, "metadata": meta} for doc, meta in zip(results['documents'][0], results['metadatas'][0])]
    except Exception as e:
        logging.error(f"Error in vector_search: {str(e)}")
        raise

def schedule_embedding(media_id: int, content: str, media_name: str, summary: str):
    try:
        chunks = chunk_for_embedding(content, media_name, summary, chunk_options)
        texts = [chunk['text'] for chunk in chunks]
        embeddings = create_embeddings_batch(texts, embedding_provider, embedding_model, embedding_api_url)
        ids = [f"{media_id}_chunk_{i}" for i in range(len(chunks))]
        metadatas = [{
            "media_id": str(media_id),
            "chunk_index": i,
            "total_chunks": len(chunks),
            "start_index": chunk['metadata']['start_index'],
            "end_index": chunk['metadata']['end_index'],
            "file_name": media_name,
            "relative_position": chunk['metadata']['relative_position']
        } for i, chunk in enumerate(chunks)]

        store_in_chroma("all_content_embeddings", texts, embeddings, ids, metadatas)

    except Exception as e:
        logging.error(f"Error scheduling embedding for media_id {media_id}: {str(e)}")


# Function to process content, create chunks, embeddings, and store in ChromaDB and SQLite
# def process_and_store_content(content: str, collection_name: str, media_id: int):
#     # Process the content into chunks
#     chunks = improved_chunking_process(content, chunk_options)
#     texts = [chunk['text'] for chunk in chunks]
#
#     # Generate embeddings for each chunk
#     embeddings = [create_embedding(text) for text in texts]
#
#     # Create unique IDs for each chunk using the media_id and chunk index
#     ids = [f"{media_id}_chunk_{i}" for i in range(len(texts))]
#
#     # Store the texts, embeddings, and IDs in ChromaDB
#     store_in_chroma(collection_name, texts, embeddings, ids)
#
#     # Store the chunk metadata in SQLite
#     for i, chunk in enumerate(chunks):
#         add_media_chunk(media_id, chunk['text'], chunk['start'], chunk['end'], ids[i])
#
#     # Update the FTS table
#     update_fts_for_media(media_id)


#
# End of Functions for ChromaDB
#######################################################################################################################