File size: 38,426 Bytes
8a348ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
# RAG_Library_2.py
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
#
# Import necessary modules and functions
import configparser
import logging
import os
import time
from typing import Dict, Any, List, Optional

from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \
    fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords
from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes
#
# Local Imports
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \
    search_conversations_by_keywords
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
#
# 3rd-Party Imports
import openai
from flashrank import Ranker, RerankRequest
#
########################################################################################################################
#
# Functions:

# Initialize OpenAI client (adjust this based on your API key management)
openai.api_key = "your-openai-api-key"

# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
config.read('config.txt')


search_functions = {
    "Media DB": search_media_db,
    "RAG Chat": search_rag_chat,
    "RAG Notes": search_rag_notes,
    "Character Chat": search_character_chat,
    "Character Cards": search_character_cards
}

# RAG pipeline function for web scraping
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
#     try:
#         # Extract content
#         try:
#             article_data = scrape_article(url)
#             content = article_data['content']
#             title = article_data['title']
#         except Exception as e:
#             logging.error(f"Error scraping article: {str(e)}")
#             return {"error": "Failed to scrape article", "details": str(e)}
#
#         # Store the article in the database and get the media_id
#         try:
#             media_id = add_media_to_database(url, title, 'article', content)
#         except Exception as e:
#             logging.error(f"Error adding article to database: {str(e)}")
#             return {"error": "Failed to store article in database", "details": str(e)}
#
#         # Process and store content
#         collection_name = f"article_{media_id}"
#         try:
#             # Assuming you have a database object available, let's call it 'db'
#             db = get_database_connection()
#
#             process_and_store_content(
#                 database=db,
#                 content=content,
#                 collection_name=collection_name,
#                 media_id=media_id,
#                 file_name=title,
#                 create_embeddings=True,
#                 create_contextualized=True,
#                 api_name=api_choice
#             )
#         except Exception as e:
#             logging.error(f"Error processing and storing content: {str(e)}")
#             return {"error": "Failed to process and store content", "details": str(e)}
#
#         # Perform searches
#         try:
#             vector_results = vector_search(collection_name, query, k=5)
#             fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
#         except Exception as e:
#             logging.error(f"Error performing searches: {str(e)}")
#             return {"error": "Failed to perform searches", "details": str(e)}
#
#         # Combine results with error handling for missing 'content' key
#         all_results = []
#         for result in vector_results + fts_results:
#             if isinstance(result, dict) and 'content' in result:
#                 all_results.append(result['content'])
#             else:
#                 logging.warning(f"Unexpected result format: {result}")
#                 all_results.append(str(result))
#
#         context = "\n".join(all_results)
#
#         # Generate answer using the selected API
#         try:
#             answer = generate_answer(api_choice, context, query)
#         except Exception as e:
#             logging.error(f"Error generating answer: {str(e)}")
#             return {"error": "Failed to generate answer", "details": str(e)}
#
#         return {
#             "answer": answer,
#             "context": context
#         }
#
#     except Exception as e:
#         logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
#         return {"error": "An unexpected error occurred", "details": str(e)}


# RAG Search with keyword filtering
# FIXME - Update each called function to support modifiable top-k results
def enhanced_rag_pipeline(
    query: str,
    api_choice: str,
    keywords: Optional[str] = None,
    fts_top_k: int = 10,
    apply_re_ranking: bool = True,
    database_types: List[str] = ["Media DB"]
) -> Dict[str, Any]:
    """
    Perform full text search across specified database type.

    Args:
        query: Search query string
        api_choice: API to use for generating the response
        keywords: Optional list of media IDs to filter results
        fts_top_k: Maximum number of results to return
        apply_re_ranking: Whether to apply re-ranking to results
        database_types: Type of database to search

    Returns:
        Dictionary containing search results with content
    """
    log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice})
    start_time = time.time()

    try:
        # Load embedding provider from config, or fallback to 'openai'
        embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
        logging.debug(f"Using embedding provider: {embedding_provider}")

        # Initialize relevant IDs dictionary
        relevant_ids: Dict[str, Optional[List[str]]] = {}

        # Process keywords if provided
        if keywords:
            keyword_list = [k.strip().lower() for k in keywords.split(',')]
            logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")

            try:
                for db_type in database_types:
                    if db_type == "Media DB":
                        media_ids = fetch_relevant_media_ids(keyword_list)
                        relevant_ids[db_type] = [str(id_) for id_ in media_ids]
                    elif db_type == "RAG Chat":
                        conversations, _, _ = search_conversations_by_keywords(keywords=keyword_list)
                        relevant_ids[db_type] = [str(conv['conversation_id']) for conv in conversations]
                    elif db_type == "RAG Notes":
                        notes, _, _ = get_notes_by_keywords(keyword_list)
                        relevant_ids[db_type] = [str(note_id) for note_id, _, _, _ in notes]
                    elif db_type == "Character Chat":
                        relevant_ids[db_type] = [str(id_) for id_ in fetch_keywords_for_chats(keyword_list)]
                    elif db_type == "Character Cards":
                        relevant_ids[db_type] = [str(id_) for id_ in fetch_character_ids_by_keywords(keyword_list)]
                    else:
                        logging.error(f"Unsupported database type: {db_type}")

                    logging.debug(f"enhanced_rag_pipeline - {db_type} relevant IDs: {relevant_ids[db_type]}")
            except Exception as e:
                logging.error(f"Error fetching relevant IDs: {str(e)}")
                relevant_ids = {db_type: None for db_type in database_types}
        else:
            relevant_ids = {db_type: None for db_type in database_types}

        # Perform vector search
        vector_results = []
        for db_type in database_types:
            try:
                db_relevant_ids = relevant_ids.get(db_type)
                results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k)
                vector_results.extend(results)
                logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}")
            except Exception as e:
                logging.error(f"Error performing vector search on {db_type}: {str(e)}")

        # Perform vector search
        # FIXME
        #vector_results = perform_vector_search(query, relevant_media_ids)
        #ogging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}")

        # Perform full-text search
        #v1
        #fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k)

        # v2
        # Perform full-text search across specified databases
        fts_results = []
        for db_type in database_types:
            try:
                db_relevant_ids = relevant_ids.get(db_type)
                db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k)
                fts_results.extend(db_results)
                logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}")
            except Exception as e:
                logging.error(f"Error performing full-text search on {db_type}: {str(e)}")

        #logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:")
        logging.debug(
            "\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join(
                [str(item) for item in fts_results]) + "\n"
        )

        # Combine results
        all_results = vector_results + fts_results

        # FIXME - specify model + add param to modify at call time
        # You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2"
        # Apply re-ranking if enabled and results exist
        if apply_re_ranking and all_results:
            logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking")

            if all_results:
                ranker = Ranker()

                # Prepare passages for re-ranking
                passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
                rerank_request = RerankRequest(query=query, passages=passages)

                # Rerank the results
                reranked_results = ranker.rerank(rerank_request)

                # Sort results based on the re-ranking score
                reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)

                # Log reranked results
                logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}")

                # Update all_results based on reranking
                all_results = [all_results[result['id']] for result in reranked_results]

        # Extract content from results (top fts_top_k by default)
        context = "\n".join([result['content'] for result in all_results[:fts_top_k]])
        #logging.debug(f"Context length: {len(context)}")
        logging.debug(f"Context: {context[:200]}")

        # Generate answer using the selected API
        answer = generate_answer(api_choice, context, query)

        if not all_results:
            logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
            return {
                "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
                "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
            }

        # Log metrics
        pipeline_duration = time.time() - start_time
        log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice})
        log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice})

        return {
            "answer": answer,
            "context": context
        }

    except Exception as e:
        log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)})
        logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
        logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
        return {
            "answer": "An error occurred while processing your request.",
            "context": ""
        }



# Need to write a test for this function FIXME
def generate_answer(api_choice: str, context: str, query: str) -> str:
    # Metrics
    log_counter("generate_answer_attempt", labels={"api_choice": api_choice})
    start_time = time.time()
    logging.debug("Entering generate_answer function")
    config = load_comprehensive_config()
    logging.debug(f"Config sections: {config.sections()}")
    prompt = f"Context: {context}\n\nQuestion: {query}"
    try:
        if api_choice == "OpenAI":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_openai(config['API']['openai_api_key'], prompt, "")

        elif api_choice == "Anthropic":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")

        elif api_choice == "Cohere":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")

        elif api_choice == "Groq":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_groq(config['API']['groq_api_key'], prompt, "")

        elif api_choice == "OpenRouter":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")

        elif api_choice == "HuggingFace":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")

        elif api_choice == "DeepSeek":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")

        elif api_choice == "Mistral":
            from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")

        # Local LLM APIs
        elif api_choice == "Local-LLM":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            # FIXME
            return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "")

        elif api_choice == "Llama.cpp":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None)
        elif api_choice == "Kobold":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None)

        elif api_choice == "Ooba":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None)

        elif api_choice == "TabbyAPI":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_tabbyapi(prompt, None, None, None, None, )

        elif api_choice == "vLLM":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None)

        elif api_choice.lower() == "ollama":
            from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
            answer_generation_duration = time.time() - start_time
            log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice})
            log_counter("generate_answer_success", labels={"api_choice": api_choice})
            return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None)

        elif api_choice.lower() == "custom_openai_api":
            logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API")
            summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None,
                                                   None)
        else:
            log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()})
            raise ValueError(f"Unsupported API choice: {api_choice}")
    except Exception as e:
        log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)})
        logging.error(f"Error in generate_answer: {str(e)}")
        return "An error occurred while generating the answer."


def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]:
    log_counter("perform_vector_search_attempt")
    start_time = time.time()
    all_collections = chroma_client.list_collections()
    vector_results = []
    try:
        for collection in all_collections:
            collection_results = vector_search(collection.name, query, k=top_k)
            if not collection_results:
                continue  # Skip empty results
            filtered_results = [
                result for result in collection_results
                if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
            ]
            vector_results.extend(filtered_results)
        search_duration = time.time() - start_time
        log_histogram("perform_vector_search_duration", search_duration)
        log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)})
        return vector_results
    except Exception as e:
        log_counter("perform_vector_search_error", labels={"error": str(e)})
        logging.error(f"Error in perform_vector_search: {str(e)}")
        raise


# V2
def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
    """
    Perform full-text search on a specified database type.

    Args:
        query: Search query string
        database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards")
        relevant_ids: Optional list of media IDs to filter results
        fts_top_k: Maximum number of results to return

    Returns:
        List of search results with content and metadata
    """
    log_counter("perform_full_text_search_attempt", labels={"database_type": database_type})
    start_time = time.time()

    try:
        # Set default for fts_top_k
        if fts_top_k is None:
            fts_top_k = 10

        # Call appropriate search function based on database type
        if database_type not in search_functions:
            raise ValueError(f"Unsupported database type: {database_type}")

        # Call the appropriate search function
        results = search_functions[database_type](query, fts_top_k, relevant_ids)

        search_duration = time.time() - start_time
        log_histogram("perform_full_text_search_duration", search_duration,
                      labels={"database_type": database_type})
        log_counter("perform_full_text_search_success",
                    labels={"database_type": database_type, "result_count": len(results)})

        return results

    except Exception as e:
        log_counter("perform_full_text_search_error",
                    labels={"database_type": database_type, "error": str(e)})
        logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}")
        raise


# v1
# def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]:
#     log_counter("perform_full_text_search_attempt")
#     start_time = time.time()
#     try:
#         fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10)
#         filtered_fts_results = [
#             {
#                 "content": result['content'],
#                 "metadata": {"media_id": result['id']}
#             }
#             for result in fts_results
#             if relevant_media_ids is None or result['id'] in relevant_media_ids
#         ]
#         search_duration = time.time() - start_time
#         log_histogram("perform_full_text_search_duration", search_duration)
#         log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)})
#         return filtered_fts_results
#     except Exception as e:
#         log_counter("perform_full_text_search_error", labels={"error": str(e)})
#         logging.error(f"Error in perform_full_text_search: {str(e)}")
#         raise


def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]:
    log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)})
    start_time = time.time()
    relevant_ids = set()
    for keyword in keywords:
        try:
            media_ids = fetch_keywords_for_media(keyword)
            relevant_ids.update(media_ids)
        except Exception as e:
            log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)})
            logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}")
            # Continue processing other keywords

    fetch_duration = time.time() - start_time
    log_histogram("fetch_relevant_media_ids_duration", fetch_duration)
    log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)})
    return list(relevant_ids)


def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
    log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)})
    start_time = time.time()
    if not keywords:
        return results

    filtered_results = []
    for result in results:
        try:
            metadata = result.get('metadata', {})
            if metadata is None:
                logging.warning(f"No metadata found for result: {result}")
                continue
            if not isinstance(metadata, dict):
                logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
                continue

            media_id = metadata.get('media_id')
            if media_id is None:
                logging.warning(f"No media_id found in metadata: {metadata}")
                continue

            media_keywords = fetch_keywords_for_media(media_id)
            if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
                filtered_results.append(result)
        except Exception as e:
            logging.error(f"Error processing result: {result}. Error: {str(e)}")

    filter_duration = time.time() - start_time
    log_histogram("filter_results_by_keywords_duration", filter_duration)
    log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)})
    return filtered_results

# FIXME: to be implememted
def extract_media_id_from_result(result: str) -> Optional[int]:
    # Implement this function based on how you store the media_id in your results
    # For example, if it's stored at the beginning of each result:
    try:
        return int(result.split('_')[0])
    except (IndexError, ValueError):
        logging.error(f"Failed to extract media_id from result: {result}")
        return None

#
#
########################################################################################################################


############################################################################################################
#
# Chat RAG

def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]:
    """
    Enhanced RAG pipeline tailored for the Character Chat tab.

    Args:
        query (str): The user's input query.
        api_choice (str): The API to use for generating the response.
        character_id (int): The ID of the character being interacted with.
        keywords (Optional[str]): Comma-separated keywords to filter search results.

    Returns:
        Dict[str, Any]: Contains the generated answer and the context used.
    """
    log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id})
    start_time = time.time()
    try:
        # Load embedding provider from config, or fallback to 'openai'
        embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
        logging.debug(f"Using embedding provider: {embedding_provider}")

        # Process keywords if provided
        keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
        logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}")

        # Fetch relevant chat IDs based on character_id and keywords
        if keyword_list:
            relevant_chat_ids = fetch_keywords_for_chats(keyword_list)
        else:
            relevant_chat_ids = fetch_all_chat_ids(character_id)
        logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}")

        if not relevant_chat_ids:
            logging.info(f"No chats found for the given keywords and character ID: {character_id}")
            # Fallback to generating answer without context
            answer = generate_answer(api_choice, "", query)
            # Metrics
            pipeline_duration = time.time() - start_time
            log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice})
            log_counter("enhanced_rag_pipeline_chat_success",
                        labels={"api_choice": api_choice, "character_id": character_id})
            return {
                "answer": answer,
                "context": ""
            }

        # Perform vector search within the relevant chats
        vector_results = perform_vector_search_chat(query, relevant_chat_ids)
        logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}")

        # Perform full-text search within the relevant chats
        # FIXME - Update for DB Selection
        fts_results = perform_full_text_search_chat(query, relevant_chat_ids)
        logging.debug("enhanced_rag_pipeline_chat - Full-text search results:")
        logging.debug("\n".join([str(item) for item in fts_results]))

        # Combine results
        all_results = vector_results + fts_results

        apply_re_ranking = True
        if apply_re_ranking:
            logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking")
            ranker = Ranker()

            # Prepare passages for re-ranking
            passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)]
            rerank_request = RerankRequest(query=query, passages=passages)

            # Rerank the results
            reranked_results = ranker.rerank(rerank_request)

            # Sort results based on the re-ranking score
            reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True)

            # Log reranked results
            logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}")

            # Update all_results based on reranking
            all_results = [all_results[result['id']] for result in reranked_results]

        # Extract context from top results (limit to top 10)
        context = "\n".join([result['content'] for result in all_results[:10]])
        logging.debug(f"Context length: {len(context)}")
        logging.debug(f"Context: {context[:200]}")  # Log only the first 200 characters for brevity

        # Generate answer using the selected API
        answer = generate_answer(api_choice, context, query)

        if not all_results:
            logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
            return {
                "answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer,
                "context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query
            }

        return {
            "answer": answer,
            "context": context
        }

    except Exception as e:
        log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)})
        logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}")
        return {
            "answer": "An error occurred while processing your request.",
            "context": ""
        }


def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]:
    """
    Fetch chat IDs associated with a character and filtered by keywords.

    Args:
        character_id (int): The ID of the character.
        keywords (List[str]): List of keywords to filter chats.

    Returns:
        List[int]: List of relevant chat IDs.
    """
    log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)})
    start_time = time.time()
    relevant_ids = set()
    try:
        media_ids = fetch_keywords_for_chats(keywords)
        fetch_duration = time.time() - start_time
        log_histogram("fetch_relevant_chat_ids_duration", fetch_duration)
        log_counter("fetch_relevant_chat_ids_success",
                    labels={"character_id": character_id, "result_count": len(relevant_ids)})
        relevant_ids.update(media_ids)
        return list(relevant_ids)
    except Exception as e:
        log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
        logging.error(f"Error fetching relevant chat IDs: {str(e)}")
        return []


def fetch_all_chat_ids(character_id: int) -> List[int]:
    """
    Fetch all chat IDs associated with a specific character.

    Args:
        character_id (int): The ID of the character.

    Returns:
        List[int]: List of all chat IDs for the character.
    """
    log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id})
    start_time = time.time()
    try:
        chats = get_character_chats(character_id=character_id)
        chat_ids = [chat['id'] for chat in chats]
        fetch_duration = time.time() - start_time
        log_histogram("fetch_all_chat_ids_duration", fetch_duration)
        log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)})
        return chat_ids
    except Exception as e:
        log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)})
        logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}")
        return []

#
# End of Chat RAG
############################################################################################################

# Function to preprocess and store all existing content in the database
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
#     unprocessed_media = get_unprocessed_media()
#     total_media = len(unprocessed_media)
#
#     for index, row in enumerate(unprocessed_media, 1):
#         media_id, content, media_type, file_name = row
#         collection_name = f"{media_type}_{media_id}"
#
#         logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
#
#         try:
#             process_and_store_content(
#                 database=database,
#                 content=content,
#                 collection_name=collection_name,
#                 media_id=media_id,
#                 file_name=file_name or f"{media_type}_{media_id}",
#                 create_embeddings=True,
#                 create_contextualized=create_contextualized,
#                 api_name=api_name
#             )
#
#             # Mark the media as processed in the database
#             mark_media_as_processed(database, media_id)
#
#             logger.info(f"Successfully processed media ID {media_id}")
#         except Exception as e:
#             logger.error(f"Error processing media ID {media_id}: {str(e)}")
#
#     logger.info("Finished preprocessing all unprocessed content")

############################################################################################################
#
# ElasticSearch Retriever

# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
#
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query

#
# End of RAG_Library_2.py
############################################################################################################