File size: 5,937 Bytes
a6ecdfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Embeddings_Create.py
# Description: Functions for Creating and managing Embeddings in ChromaDB with LLama.cpp/OpenAI/Transformers
#
# Imports:
import logging
from typing import List, Dict, Any

import numpy as np
#
# 3rd-Party Imports:
import requests
from transformers import AutoTokenizer, AutoModel
import torch
#
# Local Imports:
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
from App_Function_Libraries.Summarization_General_Lib import summarize
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
from App_Function_Libraries.Chunk_Lib import chunk_options, improved_chunking_process, determine_chunk_position
#
#
#######################################################################################################################
#
# Functions:

# FIXME - Add all globals to summarize.py
loaded_config = load_comprehensive_config()
embedding_provider = loaded_config['Embeddings']['embedding_provider']
embedding_model = loaded_config['Embeddings']['embedding_model']
embedding_api_url = loaded_config['Embeddings']['embedding_api_url']
embedding_api_key = loaded_config['Embeddings']['embedding_api_key']

# Embedding Chunking Settings
chunk_size = loaded_config['Embeddings']['chunk_size']
overlap = loaded_config['Embeddings']['overlap']


# FIXME - Add logging

# FIXME - refactor/setup to use config file & perform chunking
def create_embedding(text: str, provider: str, model: str, api_url: str = None, api_key: str = None) -> List[float]:
    try:
        if provider == 'openai':
            embedding = get_openai_embeddings(text, model)
        elif provider == 'local':
            embedding = create_local_embedding(text, model, api_url, api_key)
        elif provider == 'huggingface':
            embedding = create_huggingface_embedding(text, model)
        elif provider == 'llamacpp':
            embedding = create_llamacpp_embedding(text, api_url)
        else:
            raise ValueError(f"Unsupported embedding provider: {provider}")

        if isinstance(embedding, np.ndarray):
            embedding = embedding.tolist()
        elif isinstance(embedding, torch.Tensor):
            embedding = embedding.detach().cpu().numpy().tolist()

        return embedding

    except Exception as e:
        logging.error(f"Error creating embedding: {str(e)}")
        raise


def create_huggingface_embedding(text: str, model: str) -> List[float]:
    tokenizer = AutoTokenizer.from_pretrained(model)
    model = AutoModel.from_pretrained(model)

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)

    embeddings = outputs.last_hidden_state.mean(dim=1)
    return embeddings[0].tolist()


# FIXME
def create_stella_embeddings(text: str) -> List[float]:
    if embedding_provider == 'local':
        # Load the model and tokenizer
        tokenizer = AutoTokenizer.from_pretrained("dunzhang/stella_en_400M_v5")
        model = AutoModel.from_pretrained("dunzhang/stella_en_400M_v5")

        # Tokenize and encode the text
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)

        # Generate embeddings
        with torch.no_grad():
            outputs = model(**inputs)

        # Use the mean of the last hidden state as the sentence embedding
        embeddings = outputs.last_hidden_state.mean(dim=1)

        return embeddings[0].tolist()  # Convert to list for consistency
    elif embedding_provider == 'openai':
        return get_openai_embeddings(text, embedding_model)
    else:
        raise ValueError(f"Unsupported embedding provider: {embedding_provider}")


def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
    response = requests.post(
        api_url,
        json={"input": text}
    )
    response.raise_for_status()
    return response.json()['embedding']


def create_local_embedding(text: str, model: str, api_url: str, api_key: str) -> List[float]:
    response = requests.post(
        api_url,
        json={"text": text, "model": model},
        headers={"Authorization": f"Bearer {api_key}"}
    )
    response.raise_for_status()
    return response.json().get('embedding', None)


def chunk_for_embedding(text: str, file_name: str, api_name, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
    options = chunk_options.copy()
    if custom_chunk_options:
        options.update(custom_chunk_options)


    # FIXME
    if api_name is not None:
        # Generate summary of the full document
        full_summary = summarize(text, None, api_name, None, None, None)
    else:
        full_summary = "Full document summary not available."

    chunks = improved_chunking_process(text, options)
    total_chunks = len(chunks)

    chunked_text_with_headers = []
    for i, chunk in enumerate(chunks, 1):
        chunk_text = chunk['text']
        chunk_position = determine_chunk_position(chunk['metadata']['relative_position'])

        chunk_header = f"""

        Original Document: {file_name}

        Full Document Summary: {full_summary}

        Chunk: {i} of {total_chunks}

        Position: {chunk_position}



        --- Chunk Content ---

        """

        full_chunk_text = chunk_header + chunk_text
        chunk['text'] = full_chunk_text
        chunk['metadata']['file_name'] = file_name
        chunked_text_with_headers.append(chunk)

    return chunked_text_with_headers


def create_openai_embedding(text: str, model: str) -> List[float]:
    embedding = get_openai_embeddings(text, model)
    return embedding



#
# End of File.
#######################################################################################################################