Spaces:
Running
Running
File size: 20,631 Bytes
fa9a583 530424e fa9a583 c313b25 fa9a583 c313b25 fa9a583 c313b25 fa9a583 530424e fa9a583 530424e 83c8d2b 530424e 83c8d2b 530424e 83c8d2b 530424e fa9a583 530424e fa9a583 530424e fa9a583 530424e fa9a583 f71d2e6 fa9a583 f71d2e6 fa9a583 530424e fa9a583 530424e fa9a583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Explain_summarize_tab.py
# Gradio UI for explaining and summarizing text
#
# Imports
import logging
#
# External Imports
import gradio as gr
from App_Function_Libraries.DB.DB_Manager import load_preset_prompts
from App_Function_Libraries.Gradio_UI.Gradio_Shared import update_user_prompt
#
# Local Imports
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \
summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm, \
summarize_with_ollama
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai, summarize_with_anthropic, \
summarize_with_cohere, summarize_with_groq, summarize_with_openrouter, summarize_with_deepseek, \
summarize_with_huggingface
#
#
############################################################################################################
#
# Functions:
def create_summarize_explain_tab():
with gr.TabItem("Analyze Text"):
gr.Markdown("# Analyze / Explain / Summarize Text without ingesting it into the DB")
with gr.Row():
with gr.Column():
with gr.Row():
text_to_work_input = gr.Textbox(label="Text to be Explained or Summarized",
placeholder="Enter the text you want explained or summarized here",
lines=20)
with gr.Row():
explanation_checkbox = gr.Checkbox(label="Explain Text", value=True)
summarization_checkbox = gr.Checkbox(label="Summarize Text", value=True)
custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
value=False,
visible=True)
preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
value=False,
visible=True)
with gr.Row():
preset_prompt = gr.Dropdown(label="Select Preset Prompt",
choices=load_preset_prompts(),
visible=False)
with gr.Row():
custom_prompt_input = gr.Textbox(label="Custom Prompt",
placeholder="Enter custom prompt here",
lines=3,
visible=False)
with gr.Row():
system_prompt_input = gr.Textbox(label="System Prompt",
value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]
""",
lines=3,
visible=False,
interactive=True)
api_endpoint = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral",
"OpenRouter",
"Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"],
value=None,
label="API to be used for request (Mandatory)"
)
with gr.Row():
api_key_input = gr.Textbox(label="API Key (if required)", placeholder="Enter your API key here",
type="password")
with gr.Row():
explain_summarize_button = gr.Button("Explain/Summarize")
with gr.Column():
summarization_output = gr.Textbox(label="Summary:", lines=20)
explanation_output = gr.Textbox(label="Explanation:", lines=20)
custom_prompt_output = gr.Textbox(label="Custom Prompt:", lines=20, visible=True)
custom_prompt_checkbox.change(
fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
inputs=[custom_prompt_checkbox],
outputs=[custom_prompt_input, system_prompt_input]
)
preset_prompt_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[preset_prompt_checkbox],
outputs=[preset_prompt]
)
def update_prompts(preset_name):
prompts = update_user_prompt(preset_name)
return (
gr.update(value=prompts["user_prompt"], visible=True),
gr.update(value=prompts["system_prompt"], visible=True)
)
preset_prompt.change(
update_prompts,
inputs=preset_prompt,
outputs=[custom_prompt_input, system_prompt_input]
)
explain_summarize_button.click(
fn=summarize_explain_text,
inputs=[text_to_work_input, api_endpoint, api_key_input, summarization_checkbox, explanation_checkbox, custom_prompt_input, system_prompt_input],
outputs=[summarization_output, explanation_output, custom_prompt_output]
)
def summarize_explain_text(message, api_endpoint, api_key, summarization, explanation, custom_prompt, custom_system_prompt,):
global custom_prompt_output
summarization_response = None
explanation_response = None
temp = 0.7
try:
logging.info(f"Debug - summarize_explain_text Function - Message: {message}")
logging.info(f"Debug - summarize_explain_text Function - API Endpoint: {api_endpoint}")
# Prepare the input for the API
input_data = f"User: {message}\n"
# Print first 500 chars
logging.info(f"Debug - Chat Function - Input Data: {input_data[:500]}...")
logging.debug(f"Debug - Chat Function - API Key: {api_key[:10]}")
user_prompt = " "
if not api_endpoint:
return "Please select an API endpoint", "Please select an API endpoint"
try:
if summarization:
system_prompt = """<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]"""
# Use the existing API request code based on the selected endpoint
logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
if api_endpoint.lower() == 'openai':
summarization_response = summarize_with_openai(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "anthropic":
summarization_response = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "cohere":
summarization_response = summarize_with_cohere(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "groq":
summarization_response = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "openrouter":
summarization_response = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "deepseek":
summarization_response = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "llama.cpp":
summarization_response = summarize_with_llama(input_data, user_prompt, api_key, temp, system_prompt)
elif api_endpoint.lower() == "kobold":
summarization_response = summarize_with_kobold(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "ooba":
summarization_response = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "tabbyapi":
summarization_response = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "vllm":
summarization_response = summarize_with_vllm(input_data, user_prompt, system_prompt)
elif api_endpoint.lower() == "local-llm":
summarization_response = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "huggingface":
summarization_response = summarize_with_huggingface(api_key, input_data, user_prompt,
temp) # , system_prompt)
elif api_endpoint.lower() == "ollama":
summarization_response = summarize_with_ollama(input_data, user_prompt, None, api_key, temp, system_prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
response1 = f"An error occurred during summarization: {str(e)}"
try:
if explanation:
system_prompt = """You are a professional teacher. Please explain the content presented in an easy to digest fashion so that a non-specialist may understand it."""
# Use the existing API request code based on the selected endpoint
logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
if api_endpoint.lower() == 'openai':
explanation_response = summarize_with_openai(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "anthropic":
explanation_response = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "cohere":
explanation_response = summarize_with_cohere(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "groq":
explanation_response = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "openrouter":
explanation_response = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "deepseek":
explanation_response = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "llama.cpp":
explanation_response = summarize_with_llama(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "kobold":
explanation_response = summarize_with_kobold(input_data, api_key, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "ooba":
explanation_response = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "tabbyapi":
explanation_response = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "vllm":
explanation_response = summarize_with_vllm(input_data, user_prompt, system_prompt)
elif api_endpoint.lower() == "local-llm":
explanation_response = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "huggingface":
explanation_response = summarize_with_huggingface(api_key, input_data, user_prompt,
temp) # , system_prompt)
elif api_endpoint.lower() == "ollama":
explanation_response = summarize_with_ollama(input_data, user_prompt, temp, system_prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
response2 = f"An error occurred during summarization: {str(e)}"
try:
if custom_prompt:
system_prompt = custom_system_prompt
user_prompt = custom_prompt + input_data
# Use the existing API request code based on the selected endpoint
logging.info(f"Debug - Chat Function - API Endpoint: {api_endpoint}")
if api_endpoint.lower() == 'openai':
custom_prompt_output = summarize_with_openai(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "anthropic":
custom_prompt_output = summarize_with_anthropic(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "cohere":
custom_prompt_output = summarize_with_cohere(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "groq":
custom_prompt_output = summarize_with_groq(api_key, input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "openrouter":
custom_prompt_output = summarize_with_openrouter(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "deepseek":
custom_prompt_output = summarize_with_deepseek(api_key, input_data, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "llama.cpp":
custom_prompt_output = summarize_with_llama(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "kobold":
custom_prompt_output = summarize_with_kobold(input_data, api_key, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "ooba":
custom_prompt_output = summarize_with_oobabooga(input_data, api_key, user_prompt, temp,
system_prompt)
elif api_endpoint.lower() == "tabbyapi":
custom_prompt_output = summarize_with_tabbyapi(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "vllm":
custom_prompt_output = summarize_with_vllm(input_data, user_prompt, system_prompt)
elif api_endpoint.lower() == "local-llm":
custom_prompt_output = summarize_with_local_llm(input_data, user_prompt, temp, system_prompt)
elif api_endpoint.lower() == "huggingface":
custom_prompt_output = summarize_with_huggingface(api_key, input_data, user_prompt,
temp) # , system_prompt)
elif api_endpoint.lower() == "ollama":
custom_prompt_output = summarize_with_ollama(input_data, user_prompt, temp, system_prompt)
else:
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
response2 = f"An error occurred during summarization: {str(e)}"
if summarization_response:
response1 = f"Summary: {summarization_response}"
else:
response1 = "Summary: No summary requested"
if explanation_response:
response2 = f"Explanation: {explanation_response}"
else:
response2 = "Explanation: No explanation requested"
if custom_prompt_output:
response3 = f"Custom Prompt: {custom_prompt_output}"
else:
response3 = "Custom Prompt: No custom prompt requested"
return response1, response2, response3
except Exception as e:
logging.error(f"Error in chat function: {str(e)}")
return f"An error occurred: {str(e)}" |