Spaces:
Running
Running
#!/usr/bin/env python3 | |
import gradio as gr | |
import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata | |
import zipfile | |
from datetime import datetime | |
import contextlib | |
import ffmpeg | |
import torch | |
import yt_dlp | |
####### | |
# Function Sections | |
# | |
# System Checks | |
# Processing Paths and local file handling | |
# Video Download/Handling | |
# Audio Transcription | |
# Diarization | |
# Summarizers | |
# Main | |
# | |
####### | |
# To Do | |
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb | |
# Dark mode changes under gradio | |
# | |
# Changes made to app.py version: | |
# 1. Removal of video files after conversion -> check main function | |
# 2. Usage of/Hardcoding HF_TOKEN as token for API calls | |
# 3. Usage of HuggingFace for Inference | |
# 4. Other stuff I can't remember. Will eventually do a diff and document them. | |
# | |
#### | |
# | |
# TL/DW: Too Long Didn't Watch | |
# | |
# Project originally created by https://github.com/the-crypt-keeper | |
# Modifications made by https://github.com/rmusser01 | |
# All credit to the original authors, I've just glued shit together. | |
# | |
# | |
# Usage: | |
# Transcribe a single URL: | |
# python diarize.py https://example.com/video.mp4 | |
# | |
# Transcribe a single URL and have the resulting transcription summarized: | |
# python diarize.py https://example.com/video.mp4 | |
# | |
# Transcribe a list of files: | |
# python diarize.py ./path/to/your/text_file.txt | |
# | |
# Transcribe a local file: | |
# python diarize.py /path/to/your/localfile.mp4 | |
# | |
# Transcribe a local file and have it summarized: | |
# python diarize.py ./input.mp4 --api_name openai --api_key <your_openai_api_key> | |
# | |
# Transcribe a list of files and have them all summarized: | |
# python diarize.py path_to_your_text_file.txt --api_name <openai> --api_key <your_openai_api_key> | |
# | |
### | |
####################### | |
# Config loading | |
# | |
# Read configuration from file | |
config = configparser.ConfigParser() | |
config.read('config.txt') | |
# API Keys | |
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) | |
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) | |
groq_api_key = config.get('API', 'groq_api_key', fallback=None) | |
openai_api_key = config.get('API', 'openai_api_key', fallback=None) | |
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) | |
# Models | |
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') | |
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') | |
groq_model = config.get('API', 'groq_model', fallback='FIXME') | |
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') | |
huggingface_model = config.get('API', 'huggingface_model', fallback='microsoft/Phi-3-mini-128k-instruct') | |
# Local-Models | |
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') | |
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') | |
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') | |
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') | |
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') | |
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') | |
# Retrieve output paths from the configuration file | |
output_path = config.get('Paths', 'output_path', fallback='results') | |
# Retrieve processing choice from the configuration file | |
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') | |
# Log file | |
#logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG) | |
# | |
# | |
####################### | |
# Dirty hack - sue me. | |
os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
whisper_models = ["small", "medium", "small.en","medium.en"] | |
source_languages = { | |
"en": "English", | |
"zh": "Chinese", | |
"de": "German", | |
"es": "Spanish", | |
"ru": "Russian", | |
"ko": "Korean", | |
"fr": "French" | |
} | |
source_language_list = [key[0] for key in source_languages.items()] | |
print(r"""_____ _ ________ _ _ | |
|_ _|| | / /| _ \| | | | _ | |
| | | | / / | | | || | | |(_) | |
| | | | / / | | | || |/\| | | |
| | | |____ / / | |/ / \ /\ / _ | |
\_/ \_____//_/ |___/ \/ \/ (_) | |
_ _ | |
| | | | | |
| |_ ___ ___ | | ___ _ __ __ _ | |
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` | | |
| |_ | (_) || (_) | | || (_) || | | || (_| | _ | |
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) | |
__/ ||/ | |
|___/ | |
_ _ _ _ _ _ _ | |
| |(_) | | ( )| | | | | | | |
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ | |
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ | |
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | | |
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| | |
""") | |
#################################################################################################################################### | |
# System Checks | |
# | |
# | |
# Perform Platform Check | |
userOS = "" | |
def platform_check(): | |
global userOS | |
if platform.system() == "Linux": | |
print("Linux OS detected \n Running Linux appropriate commands") | |
userOS = "Linux" | |
elif platform.system() == "Windows": | |
print("Windows OS detected \n Running Windows appropriate commands") | |
userOS = "Windows" | |
else: | |
print("Other OS detected \n Maybe try running things manually?") | |
exit() | |
# Check for NVIDIA GPU and CUDA availability | |
def cuda_check(): | |
global processing_choice | |
try: | |
nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() | |
if "NVIDIA-SMI" in nvidia_smi: | |
print("NVIDIA GPU with CUDA is available.") | |
processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available | |
else: | |
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") | |
processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available | |
except subprocess.CalledProcessError: | |
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") | |
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails | |
# Ask user if they would like to use either their GPU or their CPU for transcription | |
def decide_cpugpu(): | |
global processing_choice | |
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") | |
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): | |
print("You've chosen to use the GPU.") | |
logging.debug("GPU is being used for processing") | |
processing_choice = "cuda" | |
elif processing_input.lower() == "cpu" or processing_input == "2": | |
print("You've chosen to use the CPU.") | |
logging.debug("CPU is being used for processing") | |
processing_choice = "cpu" | |
else: | |
print("Invalid choice. Please select either GPU or CPU.") | |
# check for existence of ffmpeg | |
def check_ffmpeg(): | |
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): | |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") | |
pass | |
else: | |
logging.debug("ffmpeg not installed on the local system/in local PATH") | |
print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") | |
if userOS == "Windows": | |
download_ffmpeg() | |
elif userOS == "Linux": | |
print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.") | |
else: | |
logging.debug("running an unsupported OS") | |
print("You're running an unspported/Un-tested OS") | |
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") | |
if exit_script == "y" or "yes" or "1": | |
exit() | |
# Download ffmpeg | |
def download_ffmpeg(): | |
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") | |
if user_choice.lower() == 'yes' or 'y' or '1': | |
print("Downloading ffmpeg") | |
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" | |
response = requests.get(url) | |
if response.status_code == 200: | |
print("Saving ffmpeg zip file") | |
logging.debug("Saving ffmpeg zip file") | |
zip_path = "ffmpeg-release-essentials.zip" | |
with open(zip_path, 'wb') as file: | |
file.write(response.content) | |
logging.debug("Extracting the 'ffmpeg.exe' file from the zip") | |
print("Extracting ffmpeg.exe from zip file to '/Bin' folder") | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" | |
logging.debug("checking if the './Bin' folder exists, creating if not") | |
bin_folder = "Bin" | |
if not os.path.exists(bin_folder): | |
logging.debug("Creating a folder for './Bin', it didn't previously exist") | |
os.makedirs(bin_folder) | |
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") | |
zip_ref.extract(ffmpeg_path, path=bin_folder) | |
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") | |
src_path = os.path.join(bin_folder, ffmpeg_path) | |
dst_path = os.path.join(bin_folder, "ffmpeg.exe") | |
shutil.move(src_path, dst_path) | |
logging.debug("Removing ffmpeg zip file") | |
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") | |
os.remove(zip_path) | |
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") | |
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") | |
else: | |
logging.error("Failed to download the zip file.") | |
print("Failed to download the zip file.") | |
else: | |
logging.debug("User chose to not download ffmpeg") | |
print("ffmpeg will not be downloaded.") | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
# Processing Paths and local file handling | |
# | |
# | |
def read_paths_from_file(file_path): | |
""" Reads a file containing URLs or local file paths and returns them as a list. """ | |
paths = [] # Initialize paths as an empty list | |
with open(file_path, 'r') as file: | |
for line in file: | |
line = line.strip() | |
if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')): | |
logging.debug("line successfully imported from file and added to list to be transcribed") | |
paths.append(line) | |
return paths | |
def process_path(path): | |
""" Decides whether the path is a URL or a local file and processes accordingly. """ | |
if path.startswith('http'): | |
logging.debug("file is a URL") | |
return get_youtube(path) # For YouTube URLs, modify to download and extract info | |
elif os.path.exists(path): | |
logging.debug("File is a path") | |
return process_local_file(path) # For local files, define a function to handle them | |
else: | |
logging.error(f"Path does not exist: {path}") | |
return None | |
# FIXME | |
def process_local_file(file_path): | |
logging.info(f"Processing local file: {file_path}") | |
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) | |
info_dict = {'title': title} | |
logging.debug(f"Creating {title} directory...") | |
download_path = create_download_directory(title) | |
logging.debug(f"Converting '{title}' to an audio file (wav).") | |
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction | |
logging.debug(f"'{title}' succesfully converted to an audio file (wav).") | |
return download_path, info_dict, audio_file | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
# Video Download/Handling | |
# | |
def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=True): | |
if demo_mode: | |
api_name = "huggingface" | |
api_key = os.environ.get("HF_TOKEN") | |
vad_filter = False | |
download_video_flag = False | |
try: | |
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag) | |
if results: | |
transcription_result = results[0] | |
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json') | |
with open(json_file_path, 'r') as file: | |
json_data = json.load(file) | |
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt') | |
if os.path.exists(summary_file_path): | |
return json_data, summary_file_path, json_file_path, summary_file_path | |
else: | |
return json_data, "Summary not available.", json_file_path, None | |
else: | |
return None, "No results found.", None, None | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return None, error_message, None, None | |
def create_download_directory(title): | |
base_dir = "Results" | |
# Remove characters that are illegal in Windows filenames and normalize | |
safe_title = normalize_title(title) | |
logging.debug(f"{title} successfully normalized") | |
session_path = os.path.join(base_dir, safe_title) | |
if not os.path.exists(session_path): | |
os.makedirs(session_path, exist_ok=True) | |
logging.debug(f"Created directory for downloaded video: {session_path}") | |
else: | |
logging.debug(f"Directory already exists for downloaded video: {session_path}") | |
return session_path | |
def normalize_title(title): | |
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters | |
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') | |
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '') | |
return title | |
def get_youtube(video_url): | |
ydl_opts = { | |
'format': 'bestaudio[ext=m4a]', | |
'noplaylist': False, | |
'quiet': True, | |
'extract_flat': True | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
logging.debug("About to extract youtube info") | |
info_dict = ydl.extract_info(video_url, download=False) | |
logging.debug("Youtube info successfully extracted") | |
return info_dict | |
def get_playlist_videos(playlist_url): | |
ydl_opts = { | |
'extract_flat': True, | |
'skip_download': True, | |
'quiet': True | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(playlist_url, download=False) | |
if 'entries' in info: | |
video_urls = [entry['url'] for entry in info['entries']] | |
playlist_title = info['title'] | |
return video_urls, playlist_title | |
else: | |
print("No videos found in the playlist.") | |
return [], None | |
def save_to_file(video_urls, filename): | |
with open(filename, 'w') as file: | |
file.write('\n'.join(video_urls)) | |
print(f"Video URLs saved to {filename}") | |
def download_video(video_url, download_path, info_dict, download_video_flag): | |
logging.debug("About to normalize downloaded video title") | |
title = normalize_title(info_dict['title']) | |
if download_video_flag == False: | |
file_path = os.path.join(download_path, f"{title}.m4a") | |
ydl_opts = { | |
'format': 'bestaudio[ext=m4a]', | |
'outtmpl': file_path, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
logging.debug("yt_dlp: About to download audio with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") | |
return file_path | |
else: | |
video_file_path = os.path.join(download_path, f"{title}_video.mp4") | |
audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") | |
ydl_opts_video = { | |
'format': 'bestvideo[ext=mp4]', | |
'outtmpl': video_file_path, | |
} | |
ydl_opts_audio = { | |
'format': 'bestaudio[ext=m4a]', | |
'outtmpl': audio_file_path, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: | |
logging.debug("yt_dlp: About to download video with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") | |
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: | |
logging.debug("yt_dlp: About to download audio with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") | |
output_file_path = os.path.join(download_path, f"{title}.mp4") | |
if userOS == "Windows": | |
logging.debug("Running ffmpeg on Windows...") | |
ffmpeg_command = [ | |
'.\\Bin\\ffmpeg.exe', | |
'-i', video_file_path, | |
'-i', audio_file_path, | |
'-c:v', 'copy', | |
'-c:a', 'copy', | |
output_file_path | |
] | |
subprocess.run(ffmpeg_command, check=True) | |
elif userOS == "Linux": | |
logging.debug("Running ffmpeg on Linux...") | |
ffmpeg_command = [ | |
'ffmpeg', | |
'-i', video_file_path, | |
'-i', audio_file_path, | |
'-c:v', 'copy', | |
'-c:a', 'copy', | |
output_file_path | |
] | |
subprocess.run(ffmpeg_command, check=True) | |
else: | |
logging.error("You shouldn't be here...") | |
exit() | |
os.remove(video_file_path) | |
os.remove(audio_file_path) | |
return output_file_path | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
# Audio Transcription | |
# | |
# Convert video .m4a into .wav using ffmpeg | |
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" | |
# https://www.gyan.dev/ffmpeg/builds/ | |
# | |
#os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
def convert_to_wav(video_file_path, offset=0): | |
print("Starting conversion process of .m4a to .WAV") | |
out_path = os.path.splitext(video_file_path)[0] + ".wav" | |
try: | |
if os.name == "nt": | |
logging.debug("ffmpeg being ran on windows") | |
if sys.platform.startswith('win'): | |
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe" | |
else: | |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems | |
command = [ | |
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists | |
"-ss", "00:00:00", # Start at the beginning of the video | |
"-i", video_file_path, | |
"-ar", "16000", # Audio sample rate | |
"-ac", "1", # Number of audio channels | |
"-c:a", "pcm_s16le", # Audio codec | |
out_path | |
] | |
try: | |
# Redirect stdin from null device to prevent ffmpeg from waiting for input | |
with open(os.devnull, 'rb') as null_file: | |
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True) | |
if result.returncode == 0: | |
logging.info("FFmpeg executed successfully") | |
logging.debug("FFmpeg output: %s", result.stdout) | |
else: | |
logging.error("Error in running FFmpeg") | |
logging.error("FFmpeg stderr: %s", result.stderr) | |
raise RuntimeError(f"FFmpeg error: {result.stderr}") | |
except Exception as e: | |
logging.error("Error occurred - ffmpeg doesn't like windows") | |
raise RuntimeError("ffmpeg failed") | |
exit() | |
elif os.name == "posix": | |
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
else: | |
raise RuntimeError("Unsupported operating system") | |
logging.info("Conversion to WAV completed: %s", out_path) | |
except subprocess.CalledProcessError as e: | |
logging.error("Error executing FFmpeg command: %s", str(e)) | |
raise RuntimeError("Error converting video file to WAV") | |
except Exception as e: | |
logging.error("Unexpected error occurred: %s", str(e)) | |
raise RuntimeError("Error converting video file to WAV") | |
return out_path | |
# Transcribe .wav into .segments.json | |
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): | |
logging.info('Loading faster_whisper model: %s', whisper_model) | |
from faster_whisper import WhisperModel | |
model = WhisperModel(whisper_model, device=f"{processing_choice}") | |
time_start = time.time() | |
if audio_file_path is None: | |
raise ValueError("No audio file provided") | |
logging.info("Audio file path: %s", audio_file_path) | |
try: | |
_, file_ending = os.path.splitext(audio_file_path) | |
out_file = audio_file_path.replace(file_ending, ".segments.json") | |
if os.path.exists(out_file): | |
logging.info("Segments file already exists: %s", out_file) | |
with open(out_file) as f: | |
segments = json.load(f) | |
return segments | |
logging.info('Starting transcription...') | |
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter) | |
transcribe_options = dict(task="transcribe", **options) | |
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options) | |
segments = [] | |
for segment_chunk in segments_raw: | |
chunk = { | |
"start": segment_chunk.start, | |
"end": segment_chunk.end, | |
"text": segment_chunk.text | |
} | |
logging.debug("Segment: %s", chunk) | |
segments.append(chunk) | |
logging.info("Transcription completed with faster_whisper") | |
with open(out_file, 'w') as f: | |
json.dump(segments, f, indent=2) | |
except Exception as e: | |
logging.error("Error transcribing audio: %s", str(e)) | |
raise RuntimeError("Error transcribing audio") | |
return segments | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
# Diarization | |
# | |
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1 | |
# embedding_model = "pyannote/embedding", embedding_size=512 | |
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192 | |
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): | |
""" | |
1. Generating speaker embeddings for each segments. | |
2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. | |
""" | |
try: | |
from pyannote.audio import Audio | |
from pyannote.core import Segment | |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding | |
import numpy as np | |
import pandas as pd | |
from sklearn.cluster import AgglomerativeClustering | |
from sklearn.metrics import silhouette_score | |
import tqdm | |
import wave | |
embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
_,file_ending = os.path.splitext(f'{video_file_path}') | |
audio_file = video_file_path.replace(file_ending, ".wav") | |
out_file = video_file_path.replace(file_ending, ".diarize.json") | |
logging.debug("getting duration of audio file") | |
with contextlib.closing(wave.open(audio_file,'r')) as f: | |
frames = f.getnframes() | |
rate = f.getframerate() | |
duration = frames / float(rate) | |
logging.debug("duration of audio file obtained") | |
print(f"duration of audio file: {duration}") | |
def segment_embedding(segment): | |
logging.debug("Creating embedding") | |
audio = Audio() | |
start = segment["start"] | |
end = segment["end"] | |
# Enforcing a minimum segment length | |
if end-start < 0.3: | |
padding = 0.3-(end-start) | |
start -= padding/2 | |
end += padding/2 | |
print('Padded segment because it was too short:',segment) | |
# Whisper overshoots the end timestamp in the last segment | |
end = min(duration, end) | |
# clip audio and embed | |
clip = Segment(start, end) | |
waveform, sample_rate = audio.crop(audio_file, clip) | |
return embedding_model(waveform[None]) | |
embeddings = np.zeros(shape=(len(segments), embedding_size)) | |
for i, segment in enumerate(tqdm.tqdm(segments)): | |
embeddings[i] = segment_embedding(segment) | |
embeddings = np.nan_to_num(embeddings) | |
print(f'Embedding shape: {embeddings.shape}') | |
if num_speakers == 0: | |
# Find the best number of speakers | |
score_num_speakers = {} | |
for num_speakers in range(2, 10+1): | |
clustering = AgglomerativeClustering(num_speakers).fit(embeddings) | |
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') | |
score_num_speakers[num_speakers] = score | |
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) | |
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") | |
else: | |
best_num_speaker = num_speakers | |
# Assign speaker label | |
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) | |
labels = clustering.labels_ | |
for i in range(len(segments)): | |
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) | |
with open(out_file,'w') as f: | |
f.write(json.dumps(segments, indent=2)) | |
# Make CSV output | |
def convert_time(secs): | |
return datetime.timedelta(seconds=round(secs)) | |
objects = { | |
'Start' : [], | |
'End': [], | |
'Speaker': [], | |
'Text': [] | |
} | |
text = '' | |
for (i, segment) in enumerate(segments): | |
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: | |
objects['Start'].append(str(convert_time(segment["start"]))) | |
objects['Speaker'].append(segment["speaker"]) | |
if i != 0: | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
text = '' | |
text += segment["text"] + ' ' | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
save_path = video_file_path.replace(file_ending, ".csv") | |
df_results = pd.DataFrame(objects) | |
df_results.to_csv(save_path) | |
return df_results, save_path | |
except Exception as e: | |
raise RuntimeError("Error Running inference with local model", e) | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
#Summarizers | |
# | |
# | |
# Summarize with OpenAI ChatGPT | |
def extract_text_from_segments(segments): | |
logging.debug(f"openai: extracting text from {segments}") | |
text = ' '.join([segment['text'] for segment in segments]) | |
return text | |
def summarize_with_openai(api_key, file_path, model): | |
try: | |
logging.debug("openai: Loading json data for summarization") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("openai: Extracting text from the segments") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
logging.debug("openai: Preparing data + prompt for submittal") | |
prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" | |
data = { | |
"model": model, | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "You are a professional summarizer." | |
}, | |
{ | |
"role": "user", | |
"content": prompt_text | |
} | |
], | |
"max_tokens": 4096, # Adjust tokens as needed | |
"temperature": 0.7 | |
} | |
logging.debug("openai: Posting request") | |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
summary = response.json()['choices'][0]['message']['content'].strip() | |
logging.debug("openai: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.debug("openai: Summarization failed") | |
print("Failed to process summary:", response.text) | |
return None | |
except Exception as e: | |
logging.debug("openai: Error in processing: %s", str(e)) | |
print("Error occurred while processing summary with openai:", str(e)) | |
return None | |
def summarize_with_claude(api_key, file_path, model): | |
try: | |
logging.debug("anthropic: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("anthropic: Extracting text from the segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'x-api-key': api_key, | |
'anthropic-version': '2023-06-01', | |
'Content-Type': 'application/json' | |
} | |
logging.debug("anthropic: Prepping data + prompt for submittal") | |
user_message = { | |
"role": "user", | |
"content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" | |
} | |
data = { | |
"model": model, | |
"max_tokens": 4096, # max _possible_ tokens to return | |
"messages": [user_message], | |
"stop_sequences": ["\n\nHuman:"], | |
"temperature": 0.7, | |
"top_k": 0, | |
"top_p": 1.0, | |
"metadata": { | |
"user_id": "example_user_id", | |
}, | |
"stream": False, | |
"system": "You are a professional summarizer." | |
} | |
logging.debug("anthropic: Posting request to API") | |
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) | |
# Check if the status code indicates success | |
if response.status_code == 200: | |
logging.debug("anthropic: Post submittal successful") | |
response_data = response.json() | |
try: | |
summary = response_data['content'][0]['text'].strip() | |
logging.debug("anthropic: Summarization succesful") | |
print("Summary processed successfully.") | |
return summary | |
except (IndexError, KeyError) as e: | |
logging.debug("anthropic: Unexpected data in response") | |
print("Unexpected response format from Claude API:", response.text) | |
return None | |
elif response.status_code == 500: # Handle internal server error specifically | |
logging.debug("anthropic: Internal server error") | |
print("Internal server error from API. Retrying may be necessary.") | |
return None | |
else: | |
logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return None | |
except Exception as e: | |
logging.debug("anthropic: Error in processing: %s", str(e)) | |
print("Error occurred while processing summary with anthropic:", str(e)) | |
return None | |
# Summarize with Cohere | |
def summarize_with_cohere(api_key, file_path, model): | |
try: | |
logging.basicConfig(level=logging.DEBUG) | |
logging.debug("cohere: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"cohere: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
'Authorization': f'Bearer {api_key}' | |
} | |
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." | |
data = { | |
"chat_history": [ | |
{"role": "USER", "message": prompt_text} | |
], | |
"message": "Please provide a summary.", | |
"model": model, | |
"connectors": [{"id": "web-search"}] | |
} | |
logging.debug("cohere: Submitting request to API endpoint") | |
print("cohere: Submitting request to API endpoint") | |
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'text' in response_data: | |
summary = response_data['text'].strip() | |
logging.debug("cohere: Summarization successful") | |
print("Summary processed successfully.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return f"cohere: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("cohere: Error in processing: %s", str(e)) | |
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" | |
# https://console.groq.com/docs/quickstart | |
def summarize_with_groq(api_key, file_path, model): | |
try: | |
logging.debug("groq: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"groq: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." | |
data = { | |
"messages": [ | |
{ | |
"role": "user", | |
"content": prompt_text | |
} | |
], | |
"model": model | |
} | |
logging.debug("groq: Submitting request to API endpoint") | |
print("groq: Submitting request to API endpoint") | |
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("groq: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") | |
return f"groq: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("groq: Error in processing: %s", str(e)) | |
return f"groq: Error occurred while processing summary with groq: {str(e)}" | |
################################# | |
# | |
# Local Summarization | |
def summarize_with_llama(api_url, file_path, token): | |
try: | |
logging.debug("llama: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"llama: Extracting text from segments file") | |
text = extract_text_from_segments(segments) # Define this function to extract text properly | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
if len(token)>5: | |
headers['Authorization'] = f'Bearer {token}' | |
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." | |
data = { | |
"prompt": prompt_text | |
} | |
logging.debug("llama: Submitting request to API endpoint") | |
print("llama: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
#if 'X' in response_data: | |
logging.debug(response_data) | |
summary = response_data['content'].strip() | |
logging.debug("llama: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") | |
return f"llama: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("llama: Error in processing: %s", str(e)) | |
return f"llama: Error occurred while processing summary with llama: {str(e)}" | |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate | |
def summarize_with_kobold(api_url, file_path): | |
try: | |
logging.debug("kobold: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"kobold: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
# FIXME | |
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text." | |
logging.debug(prompt_text) | |
# Values literally c/p from the api docs.... | |
data = { | |
"max_context_length": 8096, | |
"max_length": 4096, | |
"prompt": prompt_text, | |
} | |
logging.debug("kobold: Submitting request to API endpoint") | |
print("kobold: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("kobold: API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'results' in response_data and len(response_data['results']) > 0: | |
summary = response_data['results'][0]['text'].strip() | |
logging.debug("kobold: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") | |
return f"kobold: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("kobold: Error in processing: %s", str(e)) | |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" | |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API | |
def summarize_with_oobabooga(api_url, file_path): | |
try: | |
logging.debug("ooba: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"ooba: Extracting text from segments file\n\n\n") | |
text = extract_text_from_segments(segments) | |
logging.debug(f"ooba: Finished extracting text from segments file") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite." | |
# prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable | |
prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." | |
data = { | |
"mode": "chat", | |
"character": "Example", | |
"messages": [{"role": "user", "content": prompt_text}] | |
} | |
logging.debug("ooba: Submitting request to API endpoint") | |
print("ooba: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data, verify=False) | |
logging.debug("ooba: API Response Data: %s", response) | |
if response.status_code == 200: | |
response_data = response.json() | |
summary = response.json()['choices'][0]['message']['content'] | |
logging.debug("ooba: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") | |
return f"ooba: API request failed with status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("ooba: Error in processing: %s", str(e)) | |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" | |
def save_summary_to_file(summary, file_path): | |
summary_file_path = file_path.replace('.segments.json', '_summary.txt') | |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
logging.info(f"Summary saved to file: {summary_file_path}") | |
# | |
# | |
#################################################################################################################################### | |
#################################################################################################################################### | |
# Gradio UI | |
# | |
# Only to be used when configured with Gradio for HF Space | |
def summarize_with_huggingface(api_key, file_path): | |
logging.debug(f"huggingface: Summarization process starting...") | |
if api_key == "": | |
api_key = os.environ.get("HF_TOKEN") | |
try: | |
logging.debug("huggingface: Loading json data for summarization") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("huggingface: Extracting text from the segments") | |
text = ' '.join([segment['text'] for segment in segments]) | |
api_key = os.environ.get('HF_TOKEN') | |
headers = { | |
"Authorization": f"Bearer {api_key}" | |
} | |
model = "microsoft/Phi-3-mini-128k-instruct" | |
API_URL = f"https://api-inference.huggingface.co/models/{model}" | |
data = { | |
"inputs": text, | |
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed | |
} | |
logging.debug("huggingface: Submitting request...") | |
response = requests.post(API_URL, headers=headers, json=data) | |
if response.status_code == 200: | |
summary = response.json()[0]['summary_text'] | |
logging.debug("huggingface: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") | |
return f"Failed to process summary, status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("huggingface: Error in processing: %s", str(e)) | |
print(f"Error occurred while processing summary with huggingface: {str(e)}") | |
return None | |
def same_auth(username, password): | |
return username == password | |
def launch_ui(demo_mode=False): | |
def process_transcription(json_data): | |
if json_data: | |
return "\n".join([item["text"] for item in json_data]) | |
else: | |
return "" | |
# dropdown.change(None, dropdown, None, _js=js) | |
# toggle_dark.click( | |
# None, | |
# _js=""" | |
# () => { | |
# document.body.classList.toggle('dark'); | |
# document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)' | |
# } | |
# """, | |
# ) | |
inputs = [ | |
gr.components.Textbox(label="URL"), | |
gr.components.Number(value=2, label="Number of Speakers"), | |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"), | |
gr.components.Number(value=0, label="Offset") | |
] | |
if not demo_mode: | |
inputs.extend([ | |
gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="huggingface", label="API Name"), | |
gr.components.Textbox(label="API Key"), | |
gr.components.Checkbox(value=False, label="VAD Filter"), | |
gr.components.Checkbox(value=False, label="Download Video") | |
]) | |
iface = gr.Interface( | |
fn=lambda *args: process_url(*args, demo_mode=demo_mode), | |
inputs=inputs, | |
outputs=[ | |
gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10), | |
gr.components.Textbox(label="Summary"), | |
gr.components.File(label="Download Transcription as JSON"), | |
gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None) | |
], | |
title="Video Transcription and Summarization", | |
description="Submit a video URL for transcription and summarization.", | |
allow_flagging="never", | |
theme="bethecloud/storj_theme" | |
# FIXME - Figure out how to enable dark mode... | |
# other themes: https://huggingface.co/spaces/gradio/theme-gallery | |
) | |
iface.launch(share=True) | |
# | |
# | |
##################################################################################################################################### | |
#################################################################################################################################### | |
# Main() | |
# | |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False, demo_mode=False): | |
if input_path is None and args.user_interface: | |
return [] | |
start_time = time.monotonic() | |
paths = [] # Initialize paths as an empty list | |
if os.path.isfile(input_path) and input_path.endswith('.txt'): | |
logging.debug("MAIN: User passed in a text file, processing text file...") | |
paths = read_paths_from_file(input_path) | |
elif os.path.exists(input_path): | |
logging.debug("MAIN: Local file path detected") | |
paths = [input_path] | |
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict: | |
logging.debug("MAIN: YouTube playlist detected") | |
print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""") | |
return | |
else: | |
paths = [input_path] | |
results = [] | |
for path in paths: | |
try: | |
if path.startswith('http'): | |
logging.debug("MAIN: URL Detected") | |
info_dict = get_youtube(path) | |
if info_dict: | |
logging.debug("MAIN: Creating path for video file...") | |
download_path = create_download_directory(info_dict['title']) | |
logging.debug("MAIN: Path created successfully") | |
logging.debug("MAIN: Downloading video from yt_dlp...") | |
video_path = download_video(path, download_path, info_dict, download_video_flag) | |
logging.debug("MAIN: Video downloaded successfully") | |
logging.debug("MAIN: Converting video file to WAV...") | |
audio_file = convert_to_wav(video_path, offset) | |
logging.debug("MAIN: Audio file converted succesfully") | |
else: | |
if os.path.exists(path): | |
logging.debug("MAIN: Local file path detected") | |
download_path, info_dict, audio_file = process_local_file(path) | |
else: | |
logging.error(f"File does not exist: {path}") | |
continue | |
if info_dict: | |
logging.debug("MAIN: Creating transcription file from WAV") | |
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) | |
transcription_result = { | |
'video_path': path, | |
'audio_file': audio_file, | |
'transcription': segments | |
} | |
results.append(transcription_result) | |
logging.info(f"Transcription complete: {audio_file}") | |
if path.startswith('http'): | |
# Delete the downloaded video file | |
os.remove(video_path) | |
logging.info(f"Deleted downloaded video file: {video_path}") | |
# Perform summarization based on the specified API | |
if api_name and api_key: | |
logging.debug(f"MAIN: Summarization being performed by {api_name}") | |
json_file_path = audio_file.replace('.wav', '.segments.json') | |
if api_name.lower() == 'openai': | |
api_key = openai_api_key | |
try: | |
logging.debug(f"MAIN: trying to summarize with openAI") | |
summary = summarize_with_openai(api_key, json_file_path, openai_model) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'anthropic': | |
api_key = anthropic_api_key | |
try: | |
logging.debug(f"MAIN: Trying to summarize with anthropic") | |
summary = summarize_with_claude(api_key, json_file_path, anthropic_model) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'cohere': | |
api_key = cohere_api_key | |
try: | |
logging.debug(f"MAIN: Trying to summarize with cohere") | |
summary = summarize_with_cohere(api_key, json_file_path, cohere_model) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'groq': | |
api_key = groq_api_key | |
try: | |
logging.debug(f"MAIN: Trying to summarize with Groq") | |
summary = summarize_with_groq(api_key, json_file_path, groq_model) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'llama': | |
token = llama_api_key | |
llama_ip = llama_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with Llama.cpp") | |
summary = summarize_with_llama(llama_ip, json_file_path, token) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'kobold': | |
token = kobold_api_key | |
kobold_ip = kobold_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with kobold.cpp") | |
summary = summarize_with_kobold(kobold_ip, json_file_path) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
elif api_name.lower() == 'ooba': | |
token = ooba_api_key | |
ooba_ip = ooba_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with oobabooga") | |
summary = summarize_with_oobabooga(ooba_ip, json_file_path) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
if api_name.lower() == 'huggingface': | |
api_key = huggingface_api_key | |
try: | |
logging.debug(f"MAIN: Trying to summarize with huggingface") | |
summarize_with_huggingface(api_key, json_file_path) | |
except requests.exceptions.ConnectionError: | |
r.status_code = "Connection: " | |
else: | |
logging.warning(f"Unsupported API: {api_name}") | |
summary = None | |
if summary: | |
transcription_result['summary'] = summary | |
logging.info(f"Summary generated using {api_name} API") | |
save_summary_to_file(summary, json_file_path) | |
else: | |
logging.warning(f"Failed to generate summary using {api_name} API") | |
else: | |
logging.info("No API specified. Summarization will not be performed") | |
except Exception as e: | |
logging.error(f"Error processing path: {path}") | |
logging.error(str(e)) | |
end_time = time.monotonic() | |
#print("Total program execution time: " + timedelta(seconds=end_time - start_time)) | |
return results | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.') | |
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') | |
parser.add_argument('-v','--video', action='store_true', help='Download the video instead of just the audio') | |
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') | |
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') | |
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') | |
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)') | |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') | |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') | |
parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') | |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface') | |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') | |
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)') | |
args = parser.parse_args() | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
# True | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
# Tesla T4 | |
# Since this is running in HF.... | |
args.user_interface = True | |
if args.user_interface: | |
launch_ui(demo_mode=args.demo_mode) | |
else: | |
if not args.input_path: | |
parser.print_help() | |
sys.exit(1) | |
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s') | |
logging.info('Starting the transcription and summarization process.') | |
logging.info(f'Input path: {args.input_path}') | |
logging.info(f'API Name: {args.api_name}') | |
logging.debug(f'API Key: {args.api_key}') # ehhhhh | |
logging.info(f'Number of speakers: {args.num_speakers}') | |
logging.info(f'Whisper model: {args.whisper_model}') | |
logging.info(f'Offset: {args.offset}') | |
logging.info(f'VAD filter: {args.vad_filter}') | |
logging.info(f'Log Level: {args.log_level}') #lol | |
if args.api_name and args.api_key: | |
logging.info(f'API: {args.api_name}') | |
logging.info('Summarization will be performed.') | |
else: | |
logging.info('No API specified. Summarization will not be performed.') | |
logging.debug("Platform check being performed...") | |
platform_check() | |
logging.debug("CUDA check being performed...") | |
cuda_check() | |
logging.debug("ffmpeg check being performed...") | |
check_ffmpeg() | |
# Hey, we're in HuggingFace | |
launch_ui(demo_mode=args.demo_mode) | |
try: | |
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video) | |
logging.info('Transcription process completed.') | |
except Exception as e: | |
logging.error('An error occurred during the transcription process.') | |
logging.error(str(e)) | |
sys.exit(1) | |