Spaces:
Running
Running
oceansweep
commited on
Commit
•
c8eaa51
1
Parent(s):
0c961d6
Update app.py
Browse files
app.py
CHANGED
@@ -17,10 +17,7 @@ import gradio as gr
|
|
17 |
import torch
|
18 |
import yt_dlp
|
19 |
|
20 |
-
log_level = "DEBUG"
|
21 |
-
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
23 |
-
|
24 |
#######
|
25 |
# Function Sections
|
26 |
#
|
@@ -226,7 +223,7 @@ def decide_cpugpu():
|
|
226 |
|
227 |
# check for existence of ffmpeg
|
228 |
def check_ffmpeg():
|
229 |
-
if shutil.which("ffmpeg") or (os.path.exists("
|
230 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
231 |
pass
|
232 |
else:
|
@@ -492,7 +489,7 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
492 |
if userOS == "Windows":
|
493 |
logging.debug("Running ffmpeg on Windows...")
|
494 |
ffmpeg_command = [
|
495 |
-
'
|
496 |
'-i', video_file_path,
|
497 |
'-i', audio_file_path,
|
498 |
'-c:v', 'copy',
|
@@ -890,6 +887,7 @@ def summarize_with_claude(api_key, file_path, model, custom_prompt):
|
|
890 |
# Summarize with Cohere
|
891 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
892 |
try:
|
|
|
893 |
logging.debug("cohere: Loading JSON data")
|
894 |
with open(file_path, 'r') as file:
|
895 |
segments = json.load(file)
|
@@ -1245,48 +1243,14 @@ def format_file_path(file_path):
|
|
1245 |
return file_path if file_path and os.path.exists(file_path) else None
|
1246 |
|
1247 |
def launch_ui(demo_mode=False):
|
1248 |
-
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1249 |
-
download_video):
|
1250 |
-
video_file_path = None
|
1251 |
-
try:
|
1252 |
-
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1253 |
-
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1254 |
-
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1255 |
-
|
1256 |
-
if results:
|
1257 |
-
transcription_result = results[0]
|
1258 |
-
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
1259 |
-
summary_file_path = transcription_result.get('summary', None)
|
1260 |
-
|
1261 |
-
video_file_path = transcription_result.get('video_path', None)
|
1262 |
-
if summary:
|
1263 |
-
transcription_result['summary'] = summary
|
1264 |
-
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
1265 |
-
transcription_result['summary_file_path'] = summary_file_path
|
1266 |
-
logging.info(f"Summary generated using {api_name} API")
|
1267 |
-
save_summary_to_file(summary, json_file_path)
|
1268 |
-
return transcription_result['transcription'], "Summary available.", json_file_path, summary_file_path, video_file_path
|
1269 |
-
else:
|
1270 |
-
return transcription_result[
|
1271 |
-
'transcription'], "Summary not available.", json_file_path, None, video_file_path
|
1272 |
-
else:
|
1273 |
-
logging.warning(f"Failed to generate summary using {api_name} API")
|
1274 |
-
return "No results found.", "Summary not available.", None, None, None
|
1275 |
-
|
1276 |
-
except Exception as e:
|
1277 |
-
return str(e), "Error processing the request.", None, None, None
|
1278 |
-
|
1279 |
inputs = [
|
1280 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1281 |
gr.components.Number(value=2, label="Number of Speakers"),
|
1282 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1283 |
-
gr.components.Textbox(label="Custom Prompt",
|
1284 |
-
placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:",
|
1285 |
-
lines=3),
|
1286 |
gr.components.Number(value=0, label="Offset"),
|
1287 |
gr.components.Dropdown(
|
1288 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
1289 |
-
value="huggingface",
|
1290 |
label="API Name"),
|
1291 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1292 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
@@ -1296,18 +1260,43 @@ def launch_ui(demo_mode=False):
|
|
1296 |
outputs = [
|
1297 |
gr.components.Textbox(label="Transcription"),
|
1298 |
gr.components.Textbox(label="Summary or Status Message"),
|
1299 |
-
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x
|
1300 |
-
gr.components.File(label="Download Summary as Text", visible=lambda x: x
|
1301 |
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
1302 |
]
|
1303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1304 |
iface = gr.Interface(
|
1305 |
fn=process_url,
|
1306 |
inputs=inputs,
|
1307 |
outputs=outputs,
|
1308 |
title="Video Transcription and Summarization",
|
1309 |
-
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys."
|
1310 |
-
theme="bethecloud/storj_theme" # Adjust theme as necessary
|
1311 |
)
|
1312 |
|
1313 |
iface.launch(share=False)
|
@@ -1386,7 +1375,6 @@ a = """def launch_ui(demo_mode=False):
|
|
1386 |
|
1387 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
1388 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
1389 |
-
global summary
|
1390 |
if input_path is None and args.user_interface:
|
1391 |
return []
|
1392 |
start_time = time.monotonic()
|
@@ -1451,7 +1439,6 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1451 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1452 |
if api_name.lower() == 'openai':
|
1453 |
api_key = openai_api_key
|
1454 |
-
logging.debug(f"MAIN: API Key in main: {api_key}")
|
1455 |
try:
|
1456 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
1457 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
@@ -1541,16 +1528,15 @@ if __name__ == "__main__":
|
|
1541 |
help='Whisper model (default: small.en)')
|
1542 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1543 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1544 |
-
|
1545 |
-
|
1546 |
-
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: DEBUG)')
|
1547 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1548 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1549 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
1550 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
1551 |
# parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1552 |
args = parser.parse_args()
|
1553 |
-
|
1554 |
custom_prompt = args.custom_prompt
|
1555 |
if custom_prompt == "":
|
1556 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
@@ -1568,18 +1554,18 @@ if __name__ == "__main__":
|
|
1568 |
# Since this is running in HF....
|
1569 |
args.user_interface = True
|
1570 |
if args.user_interface:
|
1571 |
-
log_level = "DEBUG"
|
1572 |
-
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
1573 |
launch_ui(demo_mode=args.demo_mode)
|
1574 |
else:
|
1575 |
if not args.input_path:
|
1576 |
parser.print_help()
|
1577 |
sys.exit(1)
|
1578 |
|
1579 |
-
logging.
|
|
|
1580 |
logging.info('Starting the transcription and summarization process.')
|
1581 |
logging.info(f'Input path: {args.input_path}')
|
1582 |
logging.info(f'API Name: {args.api_name}')
|
|
|
1583 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1584 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1585 |
logging.info(f'Offset: {args.offset}')
|
|
|
17 |
import torch
|
18 |
import yt_dlp
|
19 |
|
|
|
|
|
20 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
21 |
#######
|
22 |
# Function Sections
|
23 |
#
|
|
|
223 |
|
224 |
# check for existence of ffmpeg
|
225 |
def check_ffmpeg():
|
226 |
+
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
227 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
228 |
pass
|
229 |
else:
|
|
|
489 |
if userOS == "Windows":
|
490 |
logging.debug("Running ffmpeg on Windows...")
|
491 |
ffmpeg_command = [
|
492 |
+
'.\\Bin\\ffmpeg.exe',
|
493 |
'-i', video_file_path,
|
494 |
'-i', audio_file_path,
|
495 |
'-c:v', 'copy',
|
|
|
887 |
# Summarize with Cohere
|
888 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
889 |
try:
|
890 |
+
logging.basicConfig(level=logging.DEBUG)
|
891 |
logging.debug("cohere: Loading JSON data")
|
892 |
with open(file_path, 'r') as file:
|
893 |
segments = json.load(file)
|
|
|
1243 |
return file_path if file_path and os.path.exists(file_path) else None
|
1244 |
|
1245 |
def launch_ui(demo_mode=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1246 |
inputs = [
|
1247 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1248 |
gr.components.Number(value=2, label="Number of Speakers"),
|
1249 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1250 |
+
gr.components.Textbox(label="Custom Prompt", placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:", lines=3),
|
|
|
|
|
1251 |
gr.components.Number(value=0, label="Offset"),
|
1252 |
gr.components.Dropdown(
|
1253 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
|
|
1254 |
label="API Name"),
|
1255 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1256 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
|
|
1260 |
outputs = [
|
1261 |
gr.components.Textbox(label="Transcription"),
|
1262 |
gr.components.Textbox(label="Summary or Status Message"),
|
1263 |
+
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x != "File not available"),
|
1264 |
+
gr.components.File(label="Download Summary as Text", visible=lambda x: x != "File not available"),
|
1265 |
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
1266 |
]
|
1267 |
|
1268 |
+
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1269 |
+
download_video):
|
1270 |
+
video_file_path = None
|
1271 |
+
try:
|
1272 |
+
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1273 |
+
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1274 |
+
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1275 |
+
if results:
|
1276 |
+
transcription_result = results[0]
|
1277 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
1278 |
+
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
1279 |
+
|
1280 |
+
json_file_path = format_file_path(json_file_path)
|
1281 |
+
summary_file_path = format_file_path(summary_file_path)
|
1282 |
+
|
1283 |
+
if summary_file_path and os.path.exists(summary_file_path):
|
1284 |
+
return transcription_result[
|
1285 |
+
'transcription'], "Summary available", json_file_path, summary_file_path, video_file_path
|
1286 |
+
else:
|
1287 |
+
return transcription_result[
|
1288 |
+
'transcription'], "Summary not available", json_file_path, None, video_file_path
|
1289 |
+
else:
|
1290 |
+
return "No results found.", "Summary not available", None, None, None
|
1291 |
+
except Exception as e:
|
1292 |
+
return str(e), "Error processing the request.", None, None, None
|
1293 |
+
|
1294 |
iface = gr.Interface(
|
1295 |
fn=process_url,
|
1296 |
inputs=inputs,
|
1297 |
outputs=outputs,
|
1298 |
title="Video Transcription and Summarization",
|
1299 |
+
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys."
|
|
|
1300 |
)
|
1301 |
|
1302 |
iface.launch(share=False)
|
|
|
1375 |
|
1376 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
1377 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
|
|
1378 |
if input_path is None and args.user_interface:
|
1379 |
return []
|
1380 |
start_time = time.monotonic()
|
|
|
1439 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1440 |
if api_name.lower() == 'openai':
|
1441 |
api_key = openai_api_key
|
|
|
1442 |
try:
|
1443 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
1444 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
|
|
1528 |
help='Whisper model (default: small.en)')
|
1529 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1530 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1531 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
1532 |
+
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
|
|
1533 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1534 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1535 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
1536 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
1537 |
# parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1538 |
args = parser.parse_args()
|
1539 |
+
|
1540 |
custom_prompt = args.custom_prompt
|
1541 |
if custom_prompt == "":
|
1542 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
|
|
1554 |
# Since this is running in HF....
|
1555 |
args.user_interface = True
|
1556 |
if args.user_interface:
|
|
|
|
|
1557 |
launch_ui(demo_mode=args.demo_mode)
|
1558 |
else:
|
1559 |
if not args.input_path:
|
1560 |
parser.print_help()
|
1561 |
sys.exit(1)
|
1562 |
|
1563 |
+
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
1564 |
+
|
1565 |
logging.info('Starting the transcription and summarization process.')
|
1566 |
logging.info(f'Input path: {args.input_path}')
|
1567 |
logging.info(f'API Name: {args.api_name}')
|
1568 |
+
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
1569 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1570 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1571 |
logging.info(f'Offset: {args.offset}')
|