oh-my-dear-ai's picture
fix(csv): Fix a mistake in the tasks of mimbulus
c907f10
raw
history blame
7.45 kB
import base64
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
from io import BytesIO
df = pd.read_csv("herbologist_almanac_checklist_data.csv")
columns_with_tasks = [
"task1",
"task2",
"task3",
"task4",
"color1",
"color2",
"color3",
"color4",
"color5",
"color6",
]
PLANTS = list(df["plant"].unique())
# 更改字体设置
# rc("font", family="Arial Unicode MS")
# def decimal2base64(decimal_int):
# # 定义 64 进制字符集
# base64_chars = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
# if decimal_int == 0:
# return "0"
# base64_str = ""
# while decimal_int > 0:
# remainder = decimal_int % 64
# base64_str = base64_chars[remainder] + base64_str
# decimal_int //= 64
# return base64_str
def bin_ls2base64(ls):
# 将二进制列表转换为二进制列表
binary_str = "".join(str(n) for n in ls)
# decimal_int = int(bin_str, 2)
byte_str = int(binary_str, 2).to_bytes((len(binary_str) + 7) // 8, byteorder="big")
base64_str = base64.b64encode(byte_str).decode("utf-8")
return base64_str
def base64_to_binary(base64_str):
if isinstance(base64_str, str):
# 将base64字符串转换为二进制列表
byte_str = base64.b64decode(base64_str)
binary_str = bin(int.from_bytes(byte_str, byteorder="big"))[2:].zfill(
len(columns_with_tasks) * len(PLANTS)
)
# ls = [int(n) for n in binary_str]
return binary_str
def parse_token(token):
try:
if not token: # 处理空字符串的情况
token = "\x00"
if len(token) > 0:
payload = base64_to_binary(token)
almanac_data: list = [int(n) for n in payload]
# print(len(almanac_data))
parsed_dict = {}
for _, row in df.iterrows():
parsed_dict[row["plant"]] = [
almanac_data.pop() for _ in range(len(columns_with_tasks))
]
return parsed_dict
except Exception as e:
print(e)
# 定义一个简单的函数,模拟接收DataFrame数据
def process_data(*args):
almanac_dict = dict(zip(PLANTS, args))
almanac_df = df.filter(items=["plant", "name"] + columns_with_tasks)
almanac_bin_ls = []
for pl in PLANTS:
almanac_inp = almanac_dict[pl]
almanac_bin = [0 for _ in range(len(columns_with_tasks))]
for n in almanac_inp:
almanac_bin[n] = 1
almanac_bin_ls += almanac_bin
for _, i in enumerate(almanac_inp):
almanac_df.loc[almanac_df["plant"] == pl, columns_with_tasks[i]] = "✔"
almanac_reverse_64 = bin_ls2base64(reversed(almanac_bin_ls))
# 这里可以添加处理DataFrame的逻辑
return (
generate_img(almanac_df.drop(columns=df.columns[0])),
almanac_reverse_64,
)
def show_checkbox_groups(token):
checklist_inputs = []
parsed_dict = parse_token(token)
for index, row in df.iterrows():
tasks = [
row[col][0].upper() + row[col][1:]
for col in columns_with_tasks
if df.notnull().at[index, col]
]
with gr.Row():
checkbox = gr.CheckboxGroup(
tasks,
label=f"{row['name']}",
value=[
tasks[i]
for i, v in enumerate(parsed_dict[row["plant"]])
if v == 1 and df.notnull().at[index, columns_with_tasks[i]]
],
type="index",
)
checklist_inputs.append(checkbox)
return checklist_inputs
def wrap_text(text, max_width=20):
"""Manually wrap text based on max_width (character count)"""
wrapped_lines = []
words = text.split(" ")
line = ""
for word in words:
if len(line) + len(word) + 1 <= max_width:
line += word + " "
else:
wrapped_lines.append(line.strip())
line = word + " "
wrapped_lines.append(line.strip())
return "\n".join(wrapped_lines)
def generate_img(df):
fig, ax = plt.subplots(
figsize=(12, 16)
) # Adjust the figure size for better readability
ax.axis("off") # Turn off the axis
# Create a table with a light grey background for the header
table = ax.table(
cellText=df.values,
colLabels=df.columns,
loc="center",
colColours=["#f2f2f2"] * len(df.columns),
colWidths=[w / len(df.columns) for w in [1] + [2] * 4 + [1] * 6],
)
table.auto_set_font_size(False)
table.set_fontsize(10)
# Apply text wrapping and center alignment to non-header cells
for (row, col), cell in table.get_celld().items():
if cell.get_text().get_text() == "nan":
cell.set_text_props(text="", ha="center")
if row == 0:
cell.set_text_props(
weight="bold", ha="center"
) # Bold and center-align header text
if col == 0:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text, 9)
cell.set_text_props(text=wrapped_text, ha="center", linespacing=1)
else:
text = cell.get_text().get_text()
wrapped_text = wrap_text(text)
cell.set_text_props(
text=wrapped_text,
ha="center",
fontsize=10,
linespacing=1,
) # Enable text wrapping and center-align
# Manually scale table if needed for better readability with wrapped text
table.scale(1, 4) # Adjust row height
# Ensure the layout is adjusted properly
plt.tight_layout(pad=0.5) # Increase padding slightly
# Save the figure to a bytes buffer
buffer = BytesIO()
fig.savefig(
buffer, format="png", pad_inches=0.2
) # Adjust padding around the figure
plt.close(fig) # Close the figure to free up memory
buffer.seek(0)
image = Image.open(buffer)
return image
with gr.Blocks() as app:
gr.Markdown(
"""
<center><font size=8>👩🏻‍🌾Herbology Almanac Checklist Generator📝</font></center>
This is a simple web app that generates an almanac checklist for your plants.
"""
)
recovery_token = gr.Textbox(
value="",
label="Recovery Token",
info="Save this token or paste your saved one here",
placeholder="Keep this token to restore your previous input".upper(),
interactive=True,
)
checklist_inputs = show_checkbox_groups(recovery_token.value)
submit_button = gr.Button("Generate Image and Token")
# df_out = gr.Dataframe(label="Output Dataframe", interactive=False)
generated_img = gr.Image(label="Generated Image", format="png", type="pil")
logs = gr.Markdown(
"""
# CHANGELOG
- 204/08/31: Initial release
- 204/09/03: Add recovery token
"""
)
submit_button.click(
process_data,
inputs=checklist_inputs,
outputs=[generated_img, recovery_token],
)
recovery_token.change(
show_checkbox_groups,
inputs=[recovery_token],
outputs=checklist_inputs,
)
# generate_button.click(
# generate_img,
# inputs=[df_out],
# outputs=[generated_img],
# )
app.queue()
app.launch()