File size: 4,036 Bytes
ade0106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb029d9
ade0106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a42afa
ade0106
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio
import torch
import torchvision.transforms as T
import numpy as np
import matplotlib.pyplot as plt
import os
import random
import PIL.Image as Image
import time
from model import create_fasterrcnn_model

categories = [
        {
            "id": 0,
            "name": "creatures",
            "supercategory": "none"
        },
        {
            "id": 1,
            "name": "fish",
            "supercategory": "creatures"
        },
        {
            "id": 2,
            "name": "jellyfish",
            "supercategory": "creatures"
        },
        {
            "id": 3,
            "name": "penguin",
            "supercategory": "creatures"
        },
        {
            "id": 4,
            "name": "puffin",
            "supercategory": "creatures"
        },
        {
            "id": 5,
            "name": "shark",
            "supercategory": "creatures"
        },
        {
            "id": 6,
            "name": "starfish",
            "supercategory": "creatures"
        },
        {
            "id": 7,
            "name": "stingray",
            "supercategory": "creatures"
        }
    ]



# 1, Create title, description and article strings
title = "Ocean creatures detection Faster-R-CNN"
description = "A Faster-RCNN-ResNet-50 backbone feature extractor computer vision model to classify images of fish, penguin, shark, etc"

faster_rcnn = create_fasterrcnn_model(
    num_classes=8, # len(class_names) would also work
)

# Load saved weights
faster_rcnn.load_state_dict(
    torch.load(
        f="./third_train.pth",
        map_location=torch.device("cpu"),  # load to CPU
    )
)
import random
# Create predict function
def predict(img):
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = time.time()
    device = 'cpu'
    transform = T.Compose([T.ToPILImage(),T.ToTensor()])
    image_tensor = transform(img).to(device)
    image_tensor = image_tensor.unsqueeze(0)
    faster_rcnn.eval()
    with torch.no_grad():
        predictions = faster_rcnn(image_tensor)
    pred_boxes = predictions[0]['boxes'].cpu().numpy()
    pred_scores = predictions[0]['scores'].cpu().numpy()
    pred_labels = predictions[0]['labels'].cpu().numpy()
    label_names = [categories[label]['name'] for label in pred_labels]
    fig, ax = plt.subplots(1)
    ax.imshow(img)
    for box, score, label_name in zip(pred_boxes, pred_scores, label_names):
        if score > 0.5:
            x1, y1, x2, y2 = box
            w, h = x2 - x1, y2 - y1
            rect = plt.Rectangle((x1, y1), w, h, fill=False, edgecolor='red', linewidth=2)
            ax.add_patch(rect)
            ax.text(x1, y1, f'{label_name}: {score:.2f}', fontsize=5, color='white', bbox=dict(facecolor='red', alpha=0.2))
    # save the figure to an image file
    random_name = str(random.randint(0,99))
    img_path = f"./{random_name}.png"
    fig.savefig(img_path)
    # convert the figure to an image
    fig.canvas.draw()

    # Calculate the prediction time
    pred_time = round(time.time() - start_time, 5)

    # return the predicted label, the path to the saved image, and the prediction time
    return img_path, str(pred_time)


### 4. Gradio app ###

# Get a list of all image file paths in the folder
example_list = [["examples/" + example] for example in os.listdir("examples")]


    # Create the Gradio demo
demo = gradio.Interface(fn=predict, # mapping function from input to output
                    inputs=gradio.Image(type= "numpy"), # what are the inputs?
                    outputs=[gradio.outputs.Image(type= "filepath", label="Image with Bounding Boxes"),
                             gradio.outputs.Label(type="auto", label="Prediction Time")], # our fn has two outputs
                    # Create examples list from "examples/" directory
                    examples=example_list,
                    title=title,
                    description=description)

    # Launch the demo!
demo.launch(debug =True)