Spaces:
Runtime error
Runtime error
import io | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import requests, validators | |
import torch | |
import pathlib | |
from PIL import Image | |
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection | |
import os | |
# colors for visualization | |
COLORS = [ | |
[0.000, 0.447, 0.741], | |
[0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], | |
[0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933] | |
] | |
def make_prediction(img, feature_extractor, model): | |
inputs = feature_extractor(img, return_tensors="pt") | |
outputs = model(**inputs) | |
img_size = torch.tensor([tuple(reversed(img.size))]) | |
processed_outputs = feature_extractor.post_process(outputs, img_size) | |
return processed_outputs[0] | |
def fig2img(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None): | |
keep = output_dict["scores"] > threshold | |
boxes = output_dict["boxes"][keep].tolist() | |
scores = output_dict["scores"][keep].tolist() | |
labels = output_dict["labels"][keep].tolist() | |
if id2label is not None: | |
labels = [id2label[x] for x in labels] | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | |
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) | |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) | |
plt.axis("off") | |
return fig2img(plt.gcf()) | |
def detect_objects(model_name,url_input,image_input,threshold): | |
#Extract model and feature extractor | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
image = image_input | |
#Make prediction | |
processed_outputs = make_prediction(image, feature_extractor, model) | |
print(processed_outputs) | |
#Visualize prediction | |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | |
return viz_img | |
xxresult=0 | |
def detect_objects2(model_name,url_input,image_input,threshold,type2): | |
#Extract model and feature extractor | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
image = image_input | |
#Make prediction | |
processed_outputs = make_prediction(image, feature_extractor, model) | |
print(processed_outputs) | |
#Visualize prediction | |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | |
keep = processed_outputs["scores"] > threshold | |
det_lab = processed_outputs["labels"][keep].tolist() | |
det_lab.count(1) | |
if det_lab.count(1) > 0: | |
total_text="Trench is Detected \n Not Blurry \n" | |
else: | |
total_text="Trench is NOT Detected \n Blurry \n" | |
xxresult=1 | |
print(type2) | |
print(type(type2)) | |
if det_lab.count(4) > 0: | |
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n" | |
else: | |
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n" | |
if type2=="Trench Depth Measurement": | |
xxresult=1 | |
if det_lab.count(5) > 0: | |
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n" | |
else: | |
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n" | |
if type2=="Trench Width Measurement": | |
xxresult=1 | |
return total_text | |
def tott(): | |
if xxresult==0: | |
text2 = "The photo is ACCEPTED" | |
else: | |
text2 = "The photo is NOT ACCEPTED" | |
return text2 | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_url(example: list) -> dict: | |
return gr.Textbox.update(value=example[0]) | |
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>""" | |
description = """ | |
Links to HuggingFace Models: | |
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) | |
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) | |
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) | |
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) | |
""" | |
models = ["omarhkh/detr-finetuned-omar8"] | |
types_class = ["Trench Depth Measurement", "Trench Width Measurement"] | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
''' | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
#gr.Markdown(detect_objects2) | |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True) | |
options2 = gr.Dropdown(choices=types_class,label='Select Classification Type',show_label=True) | |
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold') | |
with gr.Tabs(): | |
with gr.TabItem('Image Upload'): | |
with gr.Row(): | |
img_input = gr.Image(type='pil') | |
img_output_from_upload= gr.Image(shape=(650,650)) | |
with gr.Row(): | |
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))]) | |
img_but = gr.Button('Detect') | |
with gr.Blocks(): | |
name = gr.Textbox(label="Final Result") | |
output = gr.Textbox(label="Reason for the results") | |
greet_btn = gr.Button("Results") | |
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True) | |
greet_btn.click(fn=tott, inputs=[], outputs=name, queue=True) | |
img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True) | |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input]) | |
demo.launch(enable_queue=True) |