Spaces:
Runtime error
Runtime error
dev -> master
#1
by
omerXfaruq
- opened
- README.md +1 -1
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +18 -50
- requirements.txt +1 -1
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 📉
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: FindYourSiblings
|
3 |
emoji: 📉
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
__pycache__/app.cpython-310.pyc
DELETED
Binary file (3.13 kB)
|
|
app.py
CHANGED
@@ -11,16 +11,12 @@ model = AutoModel.from_pretrained(model_ckpt)
|
|
11 |
hidden_dim = model.config.hidden_size
|
12 |
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
|
13 |
|
14 |
-
TOP_K = 1000
|
15 |
-
BASE_COUNT=4
|
16 |
-
MAX_COUNT = 10
|
17 |
-
|
18 |
with gr.Blocks() as demo:
|
19 |
gr.Markdown(
|
20 |
"""
|
21 |
# Find Your Twins
|
22 |
|
23 |
-
Upload your face and find the most similar
|
24 |
"""
|
25 |
)
|
26 |
|
@@ -28,27 +24,25 @@ with gr.Blocks() as demo:
|
|
28 |
with gr.Row():
|
29 |
with gr.Column(scale=1):
|
30 |
input_image = gr.Image(type="pil")
|
31 |
-
with gr.Column(scale=
|
32 |
-
|
|
|
33 |
|
34 |
-
@input_image.change(inputs=input_image, outputs=
|
35 |
async def find_similar_faces(image):
|
36 |
if image is None:
|
37 |
return None
|
38 |
inputs = extractor(images=image, return_tensors="pt")
|
39 |
outputs = model(**inputs)
|
40 |
embed = outputs.last_hidden_state[0][0]
|
41 |
-
result = await index.query(vector=embed.tolist(), top_k=
|
42 |
-
return [dataset["train"][int(vector.id)]["image"] for vector in result
|
|
|
43 |
|
44 |
gr.Examples(
|
45 |
-
examples=[
|
46 |
-
dataset["train"][6]["image"],
|
47 |
-
dataset["train"][7]["image"],
|
48 |
-
dataset["train"][8]["image"],
|
49 |
-
],
|
50 |
inputs=input_image,
|
51 |
-
outputs=
|
52 |
fn=find_similar_faces,
|
53 |
cache_examples=False,
|
54 |
)
|
@@ -57,47 +51,21 @@ with gr.Blocks() as demo:
|
|
57 |
with gr.Row():
|
58 |
with gr.Column(scale=1):
|
59 |
adv_input_image = gr.Image(type="pil")
|
60 |
-
adv_image_count = gr.
|
61 |
-
adv_button = gr.Button("Submit")
|
62 |
|
63 |
-
with gr.Column(scale=
|
64 |
-
|
65 |
|
|
|
|
|
66 |
async def find_similar_faces(image, count):
|
67 |
-
if image is None:
|
68 |
-
return None
|
69 |
inputs = extractor(images=image, return_tensors="pt")
|
70 |
outputs = model(**inputs)
|
71 |
embed = outputs.last_hidden_state[0][0]
|
72 |
result = await index.query(
|
73 |
-
vector=embed.tolist(), top_k=
|
74 |
)
|
75 |
-
return [dataset["train"][int(vector.id)]["image"] for vector in result
|
76 |
-
|
77 |
-
adv_button.click(
|
78 |
-
fn=find_similar_faces,
|
79 |
-
inputs=[adv_input_image, adv_image_count],
|
80 |
-
outputs=[adv_output_images],
|
81 |
-
)
|
82 |
-
adv_input_image.change(
|
83 |
-
fn=find_similar_faces,
|
84 |
-
inputs=[adv_input_image, adv_image_count],
|
85 |
-
outputs=[adv_output_images],
|
86 |
-
)
|
87 |
-
gr.Examples(
|
88 |
-
examples=[
|
89 |
-
[dataset["train"][6]["image"], BASE_COUNT],
|
90 |
-
[dataset["train"][7]["image"], BASE_COUNT],
|
91 |
-
[dataset["train"][8]["image"], BASE_COUNT],
|
92 |
-
],
|
93 |
-
inputs=[adv_input_image, adv_image_count],
|
94 |
-
outputs=adv_output_images,
|
95 |
-
fn=find_similar_faces,
|
96 |
-
cache_examples=False,
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
demo.
|
103 |
-
demo.launch()
|
|
|
11 |
hidden_dim = model.config.hidden_size
|
12 |
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
|
13 |
|
|
|
|
|
|
|
|
|
14 |
with gr.Blocks() as demo:
|
15 |
gr.Markdown(
|
16 |
"""
|
17 |
# Find Your Twins
|
18 |
|
19 |
+
Upload your face and find the most similar people from [Face Aging Dataset](https://huggingface.co/datasets/BounharAbdelaziz/Face-Aging-Dataset) using Google's [VIT](https://huggingface.co/google/vit-base-patch16-224-in21k) model. The task of finding most similar vectors is powered by [Upstash Vector](https://upstash.com) 🚀. Check our blog post *here*.
|
20 |
"""
|
21 |
)
|
22 |
|
|
|
24 |
with gr.Row():
|
25 |
with gr.Column(scale=1):
|
26 |
input_image = gr.Image(type="pil")
|
27 |
+
with gr.Column(scale=3):
|
28 |
+
output_image = gr.Gallery(height=800)
|
29 |
+
|
30 |
|
31 |
+
@input_image.change(inputs=input_image, outputs=output_image)
|
32 |
async def find_similar_faces(image):
|
33 |
if image is None:
|
34 |
return None
|
35 |
inputs = extractor(images=image, return_tensors="pt")
|
36 |
outputs = model(**inputs)
|
37 |
embed = outputs.last_hidden_state[0][0]
|
38 |
+
result = await index.query(vector=embed.tolist(), top_k=4)
|
39 |
+
return [dataset["train"][int(vector.id)]["image"] for vector in result]
|
40 |
+
|
41 |
|
42 |
gr.Examples(
|
43 |
+
examples=[dataset["train"][6]["image"]],
|
|
|
|
|
|
|
|
|
44 |
inputs=input_image,
|
45 |
+
outputs=output_image,
|
46 |
fn=find_similar_faces,
|
47 |
cache_examples=False,
|
48 |
)
|
|
|
51 |
with gr.Row():
|
52 |
with gr.Column(scale=1):
|
53 |
adv_input_image = gr.Image(type="pil")
|
54 |
+
adv_image_count = gr.Number(9, label="Image Count")
|
|
|
55 |
|
56 |
+
with gr.Column(scale=3):
|
57 |
+
adv_output_image = gr.Gallery(height=1000)
|
58 |
|
59 |
+
|
60 |
+
@adv_input_image.upload(inputs=[adv_input_image, adv_image_count], outputs=[adv_output_image])
|
61 |
async def find_similar_faces(image, count):
|
|
|
|
|
62 |
inputs = extractor(images=image, return_tensors="pt")
|
63 |
outputs = model(**inputs)
|
64 |
embed = outputs.last_hidden_state[0][0]
|
65 |
result = await index.query(
|
66 |
+
vector=embed.tolist(), top_k=max(1, min(19, count))
|
67 |
)
|
68 |
+
return [dataset["train"][int(vector.id)]["image"] for vector in result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
demo.launch(debug=True)
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
transformers
|
3 |
datasets
|
4 |
upstash-vector
|
|
|
1 |
+
torchvision
|
2 |
transformers
|
3 |
datasets
|
4 |
upstash-vector
|