Spaces:
Build error
Build error
File size: 6,410 Bytes
4fa8cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import torch
import random
import whisper
import re
from nemo.collections.asr.models import EncDecSpeakerLabelModel
# from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def audio_to_text(audio):
model = whisper.load_model("base.en")
audio = whisper.load_audio(audio)
result = model.transcribe(audio)
return result["text"]
random_sentences = [
"the keep brown",
"jump over table",
"green mango fruit",
"how much money",
"please audio speaker",
"nothing is better",
"garden banana orange",
"tiger animal king",
"laptop mouse monitor"
]
additional_random_sentences = [
"sunrise over mountains"
"whispering gentle breeze"
"garden of roses"
"melodies in rain"
"laughing with friends"
"silent midnight moon"
"skipping in meadow"
"ocean waves crashing"
"exploring hidden caves"
"serenading under stars"
]
# Define a Gradio interface with text inputs for both speakers
def get_random_sentence():
return random.choice(random_sentences)
text_inputs = [
gr.inputs.Textbox(label="Speak the Words given below:", default=get_random_sentence, lines=1),
]
STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_ERROR = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">Spoken Words Did Not Match to the OTP, </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Please Speak Clearly!!!!</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 1: {}</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 2: {}</h1></div>
</div>
"""
)
OUTPUT_OK = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Authentication Successfull!!!</h1></div>
</div>
"""
)
OUTPUT_FAIL = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Authentication Failed!!!</h1></div>
</div>
"""
)
THRESHOLD = 0.80
model_name = "nvidia/speakerverification_en_titanet_large"
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
def clean_sentence(sentence):
# Remove commas and full stops using regular expression
cleaned_sentence = re.sub(r'[,.?!]', '', sentence)
# Convert the sentence to lowercase
cleaned_sentence = cleaned_sentence.lower()
cleaned_sentence = cleaned_sentence.strip()
return cleaned_sentence
def compare_samples(text, path1, path2):
if not (path1 and path2):
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
cls1 = audio_to_text(path1)
cls2 = audio_to_text(path2)
myText = clean_sentence(text)
Spoken1 = clean_sentence(cls1)
Spoken2 = clean_sentence(cls2)
print("OTP Given:", myText)
print("Spoken 1:", Spoken1)
print("Spoken 2:", Spoken2)
if Spoken1 == Spoken2 == myText:
embs1 = model.get_embedding(path1).squeeze()
embs2 = model.get_embedding(path2).squeeze()
# Length Normalize
X = embs1 / torch.linalg.norm(embs1)
Y = embs2 / torch.linalg.norm(embs2)
# Score
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
similarity_score = (similarity_score + 1) / 2
# Decision
if similarity_score >= THRESHOLD:
return OUTPUT_OK
else:
return OUTPUT_FAIL
else:
return OUTPUT_ERROR.format(Spoken1, Spoken2)
#
# def compare_samples1(path1, path2):
# if not (path1 and path2):
# return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
#
# embs1 = model.get_embedding(path1).squeeze()
# embs2 = model.get_embedding(path2).squeeze()
#
# # Length Normalize
# X = embs1 / torch.linalg.norm(embs1)
# Y = embs2 / torch.linalg.norm(embs2)
#
# # Score
# similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
# similarity_score = (similarity_score + 1) / 2
#
# # Decision
# if similarity_score >= THRESHOLD:
# return OUTPUT_OK.format(similarity_score * 100)
# else:
# return OUTPUT_FAIL.format(similarity_score * 100)
inputs = [
*text_inputs,
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
# upload_inputs = [
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #1"),
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #2"),
# ]
description = (
"Compare two speech samples and determine if they are from the same speaker."
)
microphone_interface = gr.Interface(
fn=compare_samples,
inputs=inputs,
outputs=gr.outputs.HTML(label=""),
title="Speaker Verification",
description=description,
layout="horizontal",
theme="huggingface",
allow_flagging=False,
live=False,
)
# upload_interface = gr.Interface(
# fn=compare_samples1,
# inputs=upload_inputs,
# outputs=gr.outputs.HTML(label=""),
# title="Speaker Verification",
# description=description,
# layout="horizontal",
# theme="huggingface",
# allow_flagging=False,
# live=False,
# )
demo = gr.TabbedInterface([microphone_interface, ], ["Microphone", ])
# demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"])
demo.launch(enable_queue=True, share=True) |