ommnnitald's picture
Upload 3 files
4fa8cbe
raw
history blame
6.41 kB
import gradio as gr
import torch
import random
import whisper
import re
from nemo.collections.asr.models import EncDecSpeakerLabelModel
# from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def audio_to_text(audio):
model = whisper.load_model("base.en")
audio = whisper.load_audio(audio)
result = model.transcribe(audio)
return result["text"]
random_sentences = [
"the keep brown",
"jump over table",
"green mango fruit",
"how much money",
"please audio speaker",
"nothing is better",
"garden banana orange",
"tiger animal king",
"laptop mouse monitor"
]
additional_random_sentences = [
"sunrise over mountains"
"whispering gentle breeze"
"garden of roses"
"melodies in rain"
"laughing with friends"
"silent midnight moon"
"skipping in meadow"
"ocean waves crashing"
"exploring hidden caves"
"serenading under stars"
]
# Define a Gradio interface with text inputs for both speakers
def get_random_sentence():
return random.choice(random_sentences)
text_inputs = [
gr.inputs.Textbox(label="Speak the Words given below:", default=get_random_sentence, lines=1),
]
STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_ERROR = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">Spoken Words Did Not Match to the OTP, </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Please Speak Clearly!!!!</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 1: {}</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 2: {}</h1></div>
</div>
"""
)
OUTPUT_OK = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Authentication Successfull!!!</h1></div>
</div>
"""
)
OUTPUT_FAIL = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Authentication Failed!!!</h1></div>
</div>
"""
)
THRESHOLD = 0.80
model_name = "nvidia/speakerverification_en_titanet_large"
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
def clean_sentence(sentence):
# Remove commas and full stops using regular expression
cleaned_sentence = re.sub(r'[,.?!]', '', sentence)
# Convert the sentence to lowercase
cleaned_sentence = cleaned_sentence.lower()
cleaned_sentence = cleaned_sentence.strip()
return cleaned_sentence
def compare_samples(text, path1, path2):
if not (path1 and path2):
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
cls1 = audio_to_text(path1)
cls2 = audio_to_text(path2)
myText = clean_sentence(text)
Spoken1 = clean_sentence(cls1)
Spoken2 = clean_sentence(cls2)
print("OTP Given:", myText)
print("Spoken 1:", Spoken1)
print("Spoken 2:", Spoken2)
if Spoken1 == Spoken2 == myText:
embs1 = model.get_embedding(path1).squeeze()
embs2 = model.get_embedding(path2).squeeze()
# Length Normalize
X = embs1 / torch.linalg.norm(embs1)
Y = embs2 / torch.linalg.norm(embs2)
# Score
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
similarity_score = (similarity_score + 1) / 2
# Decision
if similarity_score >= THRESHOLD:
return OUTPUT_OK
else:
return OUTPUT_FAIL
else:
return OUTPUT_ERROR.format(Spoken1, Spoken2)
#
# def compare_samples1(path1, path2):
# if not (path1 and path2):
# return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
#
# embs1 = model.get_embedding(path1).squeeze()
# embs2 = model.get_embedding(path2).squeeze()
#
# # Length Normalize
# X = embs1 / torch.linalg.norm(embs1)
# Y = embs2 / torch.linalg.norm(embs2)
#
# # Score
# similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
# similarity_score = (similarity_score + 1) / 2
#
# # Decision
# if similarity_score >= THRESHOLD:
# return OUTPUT_OK.format(similarity_score * 100)
# else:
# return OUTPUT_FAIL.format(similarity_score * 100)
inputs = [
*text_inputs,
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
# upload_inputs = [
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #1"),
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #2"),
# ]
description = (
"Compare two speech samples and determine if they are from the same speaker."
)
microphone_interface = gr.Interface(
fn=compare_samples,
inputs=inputs,
outputs=gr.outputs.HTML(label=""),
title="Speaker Verification",
description=description,
layout="horizontal",
theme="huggingface",
allow_flagging=False,
live=False,
)
# upload_interface = gr.Interface(
# fn=compare_samples1,
# inputs=upload_inputs,
# outputs=gr.outputs.HTML(label=""),
# title="Speaker Verification",
# description=description,
# layout="horizontal",
# theme="huggingface",
# allow_flagging=False,
# live=False,
# )
demo = gr.TabbedInterface([microphone_interface, ], ["Microphone", ])
# demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"])
demo.launch(enable_queue=True, share=True)