Spaces:
Sleeping
Sleeping
import datetime | |
from huggingface_hub import Repository | |
import os | |
import pandas as pd | |
import streamlit as st | |
import altair as alt | |
import numpy as np | |
import plotly.graph_objects as go | |
today = datetime.date.today() | |
year, week, _ = today.isocalendar() | |
DATASET_REPO_URL = ( | |
"https://huggingface.co/datasets/huggingface/transformers-stats-space-data" | |
) | |
DATA_FILENAME = f"data_{week}_{year}.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
MODELS_TO_TRACK = ["wav2vec2", "whisper"] | |
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL) | |
repo.git_pull() | |
valid_weeks = [] | |
download_results = [] | |
model_download_results = {model_name: [] for model_name in MODELS_TO_TRACK} | |
# loop over past data, finding where we have data saved (valid weeks) and tracking monthly downloads for each week | |
for i in range(1, week + 1)[::-1]: | |
data_filename = f"data_{i}_{year}.csv" | |
data_file = os.path.join("data", data_filename) | |
if os.path.exists(data_file): | |
valid_weeks.append(i) | |
dataframe = pd.read_csv(data_file) | |
df_audio = dataframe[dataframe["modality"] == "audio"] | |
audio_int_downloads = {model: int(x.replace(",", "")) for model, x in | |
zip(df_audio["model_names"], df_audio["num_downloads"].values)} | |
download_results.append(sum(audio_int_downloads.values())) | |
for model_name in MODELS_TO_TRACK: | |
model_download_results[model_name].append(audio_int_downloads.get(model_name)) | |
last_year = year - 1 | |
last_week = 52 | |
data_filename = f"data_{last_week}_{last_year}.csv" | |
data_file = os.path.join("data", data_filename) | |
if os.path.exists(data_file): | |
valid_weeks.append(0) | |
dataframe = pd.read_csv(data_file) | |
df_audio = dataframe[dataframe["modality"] == "audio"] | |
audio_int_downloads = {model: int(x.replace(",", "")) for model, x in | |
zip(df_audio["model_names"], df_audio["num_downloads"].values)} | |
download_results.append(sum(audio_int_downloads.values())) | |
for model_name in MODELS_TO_TRACK: | |
model_download_results[model_name].append(audio_int_downloads.get(model_name)) | |
fig = go.Figure() | |
fig.update_layout( | |
title="Monthly downloads", | |
xaxis_title="Week", | |
yaxis_title="Downloads",) | |
fig.add_trace( | |
go.Scatter(x=valid_weeks, y=download_results, mode='lines+markers', name="Total") | |
) | |
for model_name in MODELS_TO_TRACK: | |
fig.add_trace( | |
go.Scatter(x=valid_weeks, y=model_download_results[model_name], mode='lines+markers', name=model_name) | |
) | |
st.title("Audio Stats") | |
st.plotly_chart(fig) | |
week = st.selectbox( | |
"Week", | |
valid_weeks, | |
index=0, | |
help="Filter the download results by week" | |
) | |
DATA_FILENAME = f"data_{week}_{year}.csv" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
with open(DATA_FILE, "r") as f: | |
dataframe = pd.read_csv(DATA_FILE) | |
st.header(f"Stats for year {year} and week {week}") | |
# print audio | |
df_audio = dataframe[dataframe["modality"] == "audio"] | |
audio_int_downloads = np.array( | |
[int(x.replace(",", "")) for x in df_audio["num_downloads"].values] | |
) | |
source = pd.DataFrame( | |
{ | |
"Number of total downloads": audio_int_downloads, | |
"Model architecture name": df_audio["model_names"].values, | |
} | |
) | |
bar_chart = ( | |
alt.Chart(source) | |
.mark_bar() | |
.encode( | |
y="Number of total downloads", | |
x=alt.X("Model architecture name", sort=None), | |
) | |
) | |
st.subheader(f"Top audio downloads last 30 days") | |
st.altair_chart(bar_chart, use_container_width=True) | |
st.subheader("Audio stats last 30 days") | |
dataframe = dataframe[dataframe["modality"] == "audio"].drop("modality", axis=1) | |
dataframe.loc["Total"] = dataframe.sum(numeric_only=True) | |
total_audio_downloads = sum(audio_int_downloads) | |
# nice formatting | |
dataframe.at["Total", "num_downloads"] = "{:,}".format(total_audio_downloads) | |
dataframe.at["Total", "model_names"] = "" | |
dataframe.at["Total", "download_per_model"] = "" | |
st.table(dataframe) |