File size: 10,952 Bytes
01f15df f9b9d56 83ee74c 705c5b5 83ee74c f9b9d56 01f15df 1fd4ab2 ad9db85 1fd4ab2 bee778b ad9db85 bee778b 01f15df bee778b 01f15df f9b9d56 2af89cf 1fd4ab2 99d94e0 da20c1b 99d94e0 1fd4ab2 01f15df da20c1b 01f15df 2af89cf da20c1b 2af89cf da20c1b 01f15df da20c1b 01f15df 2af89cf 705c5b5 0997082 2af89cf 705c5b5 99d94e0 705c5b5 2af89cf 99d94e0 521288b 01f15df 521288b 01f15df 521288b 01f15df 521288b 01f15df 705c5b5 521288b 01f15df 705c5b5 01f15df 0997082 d57197f bee778b 4fec5a3 da20c1b 4fec5a3 705c5b5 4fec5a3 705c5b5 2ff143a 01f15df 2ff143a 01f15df 1fd4ab2 4fec5a3 1fd4ab2 4fec5a3 63c5e29 b45e256 4fec5a3 01f15df a3b8f2f b45e256 7ffca43 4fec5a3 7ffca43 4fec5a3 7ffca43 b45e256 4fec5a3 63c5e29 4fec5a3 7ffca43 4fec5a3 99d94e0 d57197f 7ffca43 63c5e29 4fec5a3 63c5e29 01f15df 63c5e29 4fec5a3 63c5e29 f9b9d56 01f15df f9b9d56 b45e256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
from dotenv import load_dotenv
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
from typing import List, Tuple
# .env νμΌ λ‘λ
load_dotenv()
# HuggingFace ν ν° μ€μ
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKENμ΄ μ€μ λμ§ μμμ΅λλ€. .env νμΌμ HF_TOKENμ μ€μ ν΄μ£ΌμΈμ.")
# LLM Models Definition
LLM_MODELS = {
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct" # Backup model
}
def get_client(model_name="Cohere c4ai-crp-08-2024"):
try:
return InferenceClient(LLM_MODELS[model_name], token=HF_TOKEN)
except Exception:
# If primary model fails, try backup model
return InferenceClient(LLM_MODELS["Meta Llama3.3-70B"], token=HF_TOKEN)
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv']:
try:
lines = content.split('\n')
header = lines[0]
columns = header.count('|') - 1
rows = len(lines) - 3
return f"π λ°μ΄ν°μ
ꡬ쑰: {columns}κ° μ»¬λΌ, {rows}κ° λ°μ΄ν°"
except:
return "β λ°μ΄ν°μ
ꡬ쑰 λΆμ μ€ν¨"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"π» μ½λ ꡬ쑰: {total_lines}μ€ (ν¨μ: {functions}, ν΄λμ€: {classes}, μν¬νΈ: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"π λ¬Έμ ꡬ쑰: {total_lines}μ€, {paragraphs}λ¨λ½, μ½ {words}λ¨μ΄"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
content = df.head(10).to_markdown(index=False)
return content, "parquet"
elif file_ext == '.csv':
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
df = pd.read_csv(file.name, encoding=encoding)
content = f"π λ°μ΄ν° 미리보기:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\nπ λ°μ΄ν° μ 보:\n"
content += f"- μ 체 ν μ: {len(df)}\n"
content += f"- μ 체 μ΄ μ: {len(df.columns)}\n"
content += f"- μ»¬λΌ λͺ©λ‘: {', '.join(df.columns)}\n"
content += f"\nπ μ»¬λΌ λ°μ΄ν° νμ
:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\nβ οΈ κ²°μΈ‘μΉ:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count}κ° λλ½\n"
return content, "csv"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β μ§μλλ μΈμ½λ©μΌλ‘ νμΌμ μ½μ μ μμ΅λλ€ ({', '.join(encodings)})")
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, "text"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β μ§μλλ μΈμ½λ©μΌλ‘ νμΌμ μ½μ μ μμ΅λλ€ ({', '.join(encodings)})")
except Exception as e:
return f"β νμΌ μ½κΈ° μ€λ₯: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message, history, uploaded_file, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
system_prefix = """μ λ μ¬λ¬λΆμ μΉκ·Όνκ³ μ§μ μΈ AI μ΄μμ€ν΄νΈμ
λλ€. λ€μκ³Ό κ°μ μμΉμΌλ‘ μν΅νκ² μ΅λλ€:
1. π€ μΉκ·Όνκ³ κ³΅κ°μ μΈ νλλ‘ λν
2. π‘ λͺ
ννκ³ μ΄ν΄νκΈ° μ¬μ΄ μ€λͺ
μ 곡
3. π― μ§λ¬Έμ μλλ₯Ό μ νν νμ
νμ¬ λ§μΆ€ν λ΅λ³
4. π νμν κ²½μ° μ
λ‘λλ νμΌ λ΄μ©μ μ°Έκ³ νμ¬ κ΅¬μ²΄μ μΈ λμ μ 곡
5. β¨ μΆκ°μ μΈ ν΅μ°°κ³Ό μ μμ ν΅ν κ°μΉ μλ λν
νμ μμ λ°λ₯΄κ³ μΉμ νκ² μλ΅νλ©°, νμν κ²½μ° κ΅¬μ²΄μ μΈ μμλ μ€λͺ
μ μΆκ°νμ¬
μ΄ν΄λ₯Ό λκ² μ΅λλ€."""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
return "", [{"role": "user", "content": message}, {"role": "assistant", "content": content}]
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv']:
system_message += f"\n\nνμΌ λ΄μ©:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nνμΌ λ΄μ©:\n```\n{content}\n```"
if message == "νμΌ λΆμμ μμν©λλ€...":
message = f"""[νμΌ κ΅¬μ‘° λΆμ] {file_summary}
λ€μ κ΄μ μμ λμμ λλ¦¬κ² μ΅λλ€:
1. π μ λ°μ μΈ λ΄μ© νμ
2. π‘ μ£Όμ νΉμ§ μ€λͺ
3. π― μ€μ©μ μΈ νμ© λ°©μ
4. β¨ κ°μ μ μ
5. π¬ μΆκ° μ§λ¬Έμ΄λ νμν μ€λͺ
"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
if history is not None:
for item in history:
if isinstance(item, dict):
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
messages.append({"role": "user", "content": item[0]})
if item[1]:
messages.append({"role": "assistant", "content": item[1]})
messages.append({"role": "user", "content": message})
try:
client = get_client()
partial_message = ""
current_history = []
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
partial_message += token
current_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": partial_message}
]
yield "", current_history
except Exception as e:
error_msg = f"β μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
error_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
yield "", error_history
css = """
footer {visibility: hidden}
"""
# UI ꡬμ±
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="GiniGEN π€") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">AI μ΄μμ€ν΄νΈ π€</h1>
<h3 style="font-size: 1.2em; margin: 1em;">λΉμ μ λ λ ν λν ννΈλ π¬</h3>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
label="λνμ°½ π¬",
show_label=True,
type="messages"
)
msg = gr.Textbox(
label="λ©μμ§ μ
λ ₯",
show_label=False,
placeholder="무μμ΄λ λ¬Όμ΄λ³΄μΈμ... π",
container=False
)
with gr.Row():
clear = gr.ClearButton([msg, chatbot], value="λνλ΄μ© μ§μ°κΈ°")
send = gr.Button("보λ΄κΈ° π€")
with gr.Column(scale=1):
gr.Markdown("### νμΌ μ
λ‘λ π\nμ§μ νμ: ν
μ€νΈ, μ½λ, CSV, Parquet νμΌ")
file_upload = gr.File(
label="νμΌ μ ν",
file_types=["text", ".csv", ".parquet"],
type="filepath"
)
with gr.Accordion("κ³ κΈ μ€μ βοΈ", open=False):
system_message = gr.Textbox(label="μμ€ν
λ©μμ§ π", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅λ ν ν° μ π")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ°½μμ± μμ€ π‘οΈ")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="μλ΅ λ€μμ± π")
# μμ μ§λ¬Έ
gr.Examples(
examples=[
["μλ
νμΈμ! μ΄λ€ λμμ΄ νμνμ κ°μ? π€"],
["μ΄ λ΄μ©μ λν΄ μ’ λ μμΈν μ€λͺ
ν΄ μ£Όμ€ μ μλμ? π‘"],
["μ κ° μ΄ν΄νκΈ° μ½κ² μ€λͺ
ν΄ μ£Όμκ² μ΄μ? π"],
["μ΄ λ΄μ©μ μ€μ λ‘ μ΄λ»κ² νμ©ν μ μμκΉμ? π―"],
["μΆκ°λ‘ μ‘°μΈν΄ μ£Όμ€ λ΄μ©μ΄ μμΌμ κ°μ? β¨"],
["κΆκΈν μ μ΄ λ μλλ° μ¬μ€λ΄λ λ κΉμ? π€"],
],
inputs=msg,
)
# μ΄λ²€νΈ λ°μΈλ©
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot]
)
send.click(
chat,
inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot]
)
# νμΌ μ
λ‘λμ μλ λΆμ
file_upload.change(
lambda: "νμΌ λΆμμ μμν©λλ€...",
outputs=msg
).then(
chat,
inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot]
)
if __name__ == "__main__":
demo.launch() |