File size: 6,352 Bytes
f9b9d56 574f73e 0997082 f9b9d56 574f73e 0997082 f9b9d56 0997082 f9b9d56 574f73e 0997082 574f73e 0997082 574f73e f9b9d56 0997082 574f73e 0997082 574f73e 0997082 574f73e 0997082 f9b9d56 0997082 574f73e 0997082 574f73e 0997082 f9b9d56 0997082 f9b9d56 574f73e f9b9d56 0997082 574f73e 0997082 f9b9d56 0997082 f9b9d56 0997082 f9b9d56 0997082 f9b9d56 0997082 f9b9d56 574f73e 0997082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
from transformers import pipeline
import os
from typing import List, Tuple, Generator
import concurrent.futures
# Hugging Face 토큰 설정
os.environ["TOKENIZERS_PARALLELISM"] = "false" # 경고 메시지 방지
HF_TOKEN = os.getenv("HF_TOKEN")
# Available LLM models
LLM_MODELS = {
"Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
"QwQ-32B": "Qwen/QwQ-32B-Preview",
"C4AI-Command": "CohereForAI/c4ai-command-r-plus-08-2024",
"Marco-o1": "AIDC-AI/Marco-o1",
"Qwen2.5": "Qwen/Qwen2.5-72B-Instruct",
"Mistral-Nemo": "mistralai/Mistral-Nemo-Instruct-2407",
"Nemotron-70B": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
}
# Default selected models
DEFAULT_MODELS = [
"meta-llama/Llama-3.3-70B-Instruct",
"CohereForAI/c4ai-command-r-plus-08-2024",
"mistralai/Mistral-Nemo-Instruct-2407"
]
# Pipeline 초기화
pipes = {}
for model_name in LLM_MODELS.values():
try:
pipes[model_name] = pipeline(
"text-generation",
model=model_name,
token=HF_TOKEN,
device_map="auto"
)
except Exception as e:
print(f"Failed to load model {model_name}: {str(e)}")
def process_file(file) -> str:
if file is None:
return ""
if file.name.endswith(('.txt', '.md')):
return file.read().decode('utf-8')
return f"Uploaded file: {file.name}"
def format_messages(message: str, history: List[Tuple[str, str]], system_message: str) -> List[dict]:
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
return messages
def generate_response(
pipe,
messages: List[dict],
max_tokens: int,
temperature: float,
top_p: float
) -> Generator[str, None, None]:
try:
formatted_prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
response = pipe(
formatted_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=50256,
num_return_sequences=1,
streaming=True
)
generated_text = ""
for output in response:
new_text = output[0]['generated_text'][len(formatted_prompt):].strip()
generated_text = new_text
yield generated_text
except Exception as e:
yield f"Error: {str(e)}"
def respond_all(
message: str,
file,
history1: List[Tuple[str, str]],
history2: List[Tuple[str, str]],
history3: List[Tuple[str, str]],
selected_models: List[str],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[Generator[str, None, None], Generator[str, None, None], Generator[str, None, None]]:
if file:
file_content = process_file(file)
message = f"{message}\n\nFile content:\n{file_content}"
while len(selected_models) < 3:
selected_models.append(selected_models[-1])
def generate(pipe, history):
messages = format_messages(message, history, system_message)
return generate_response(pipe, messages, max_tokens, temperature, top_p)
return (
generate(pipes[selected_models[0]], history1),
generate(pipes[selected_models[1]], history2),
generate(pipes[selected_models[2]], history3),
)
with gr.Blocks() as demo:
with gr.Row():
model_choices = gr.Checkboxgroup(
choices=list(LLM_MODELS.values()),
value=DEFAULT_MODELS,
label="Select Models (Choose up to 3)",
interactive=True
)
with gr.Row():
with gr.Column():
chat1 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 1"),
textbox=False,
)
with gr.Column():
chat2 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 2"),
textbox=False,
)
with gr.Column():
chat3 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 3"),
textbox=False,
)
with gr.Row():
with gr.Column():
system_message = gr.Textbox(
value="You are a friendly Chatbot.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
with gr.Row():
file_input = gr.File(label="Upload File (optional)")
msg_input = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False
)
def submit_message(message, file):
return respond_all(
message,
file,
chat1.chatbot.value,
chat2.chatbot.value,
chat3.chatbot.value,
model_choices.value,
system_message.value,
max_tokens.value,
temperature.value,
top_p.value,
)
msg_input.submit(
submit_message,
[msg_input, file_input],
[chat1.chatbot, chat2.chatbot, chat3.chatbot],
api_name="submit"
)
if __name__ == "__main__":
# Hugging Face 토큰이 설정되어 있는지 확인
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable is not set")
demo.launch() |