File size: 6,352 Bytes
f9b9d56
574f73e
 
 
0997082
f9b9d56
574f73e
 
 
 
0997082
 
 
 
 
 
 
 
 
 
f9b9d56
0997082
 
 
 
 
 
f9b9d56
574f73e
 
 
 
 
 
 
 
 
 
 
 
0997082
574f73e
0997082
 
 
 
 
 
574f73e
f9b9d56
0997082
 
 
 
 
 
 
 
574f73e
 
 
 
 
 
 
 
 
0997082
574f73e
 
 
 
 
0997082
 
574f73e
 
 
 
 
 
 
 
 
 
 
 
0997082
 
f9b9d56
0997082
574f73e
0997082
574f73e
 
 
 
 
 
 
 
 
0997082
 
 
f9b9d56
0997082
 
f9b9d56
574f73e
 
 
f9b9d56
0997082
574f73e
 
 
0997082
f9b9d56
0997082
 
 
 
 
 
 
 
f9b9d56
0997082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b9d56
0997082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b9d56
0997082
 
 
 
 
 
f9b9d56
 
574f73e
 
 
0997082
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
from transformers import pipeline
import os
from typing import List, Tuple, Generator
import concurrent.futures

# Hugging Face 토큰 설정
os.environ["TOKENIZERS_PARALLELISM"] = "false"  # 경고 메시지 방지
HF_TOKEN = os.getenv("HF_TOKEN")

# Available LLM models
LLM_MODELS = {
    "Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
    "QwQ-32B": "Qwen/QwQ-32B-Preview",
    "C4AI-Command": "CohereForAI/c4ai-command-r-plus-08-2024",
    "Marco-o1": "AIDC-AI/Marco-o1",
    "Qwen2.5": "Qwen/Qwen2.5-72B-Instruct",
    "Mistral-Nemo": "mistralai/Mistral-Nemo-Instruct-2407",
    "Nemotron-70B": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
}

# Default selected models
DEFAULT_MODELS = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "CohereForAI/c4ai-command-r-plus-08-2024",
    "mistralai/Mistral-Nemo-Instruct-2407"
]

# Pipeline 초기화
pipes = {}
for model_name in LLM_MODELS.values():
    try:
        pipes[model_name] = pipeline(
            "text-generation",
            model=model_name,
            token=HF_TOKEN,
            device_map="auto"
        )
    except Exception as e:
        print(f"Failed to load model {model_name}: {str(e)}")

def process_file(file) -> str:
    if file is None:
        return ""
    if file.name.endswith(('.txt', '.md')):
        return file.read().decode('utf-8')
    return f"Uploaded file: {file.name}"

def format_messages(message: str, history: List[Tuple[str, str]], system_message: str) -> List[dict]:
    messages = [{"role": "system", "content": system_message}]
    
    for user, assistant in history:
        if user:
            messages.append({"role": "user", "content": user})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})
    
    messages.append({"role": "user", "content": message})
    return messages

def generate_response(
    pipe,
    messages: List[dict],
    max_tokens: int,
    temperature: float,
    top_p: float
) -> Generator[str, None, None]:
    try:
        formatted_prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
        
        response = pipe(
            formatted_prompt,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            do_sample=True,
            pad_token_id=50256,
            num_return_sequences=1,
            streaming=True
        )
        
        generated_text = ""
        for output in response:
            new_text = output[0]['generated_text'][len(formatted_prompt):].strip()
            generated_text = new_text
            yield generated_text
            
    except Exception as e:
        yield f"Error: {str(e)}"

def respond_all(
    message: str,
    file,
    history1: List[Tuple[str, str]],
    history2: List[Tuple[str, str]],
    history3: List[Tuple[str, str]],
    selected_models: List[str],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
) -> Tuple[Generator[str, None, None], Generator[str, None, None], Generator[str, None, None]]:
    if file:
        file_content = process_file(file)
        message = f"{message}\n\nFile content:\n{file_content}"

    while len(selected_models) < 3:
        selected_models.append(selected_models[-1])

    def generate(pipe, history):
        messages = format_messages(message, history, system_message)
        return generate_response(pipe, messages, max_tokens, temperature, top_p)

    return (
        generate(pipes[selected_models[0]], history1),
        generate(pipes[selected_models[1]], history2),
        generate(pipes[selected_models[2]], history3),
    )

with gr.Blocks() as demo:
    with gr.Row():
        model_choices = gr.Checkboxgroup(
            choices=list(LLM_MODELS.values()),
            value=DEFAULT_MODELS,
            label="Select Models (Choose up to 3)",
            interactive=True
        )

    with gr.Row():
        with gr.Column():
            chat1 = gr.ChatInterface(
                lambda message, history: None,
                chatbot=gr.Chatbot(height=400, label="Chat 1"),
                textbox=False,
            )
        with gr.Column():
            chat2 = gr.ChatInterface(
                lambda message, history: None,
                chatbot=gr.Chatbot(height=400, label="Chat 2"),
                textbox=False,
            )
        with gr.Column():
            chat3 = gr.ChatInterface(
                lambda message, history: None,
                chatbot=gr.Chatbot(height=400, label="Chat 3"),
                textbox=False,
            )

    with gr.Row():
        with gr.Column():
            system_message = gr.Textbox(
                value="You are a friendly Chatbot.",
                label="System message"
            )
            max_tokens = gr.Slider(
                minimum=1,
                maximum=2048,
                value=512,
                step=1,
                label="Max new tokens"
            )
            temperature = gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p"
            )
            
    with gr.Row():
        file_input = gr.File(label="Upload File (optional)")
        msg_input = gr.Textbox(
            show_label=False,
            placeholder="Enter text and press enter",
            container=False
        )
        
    def submit_message(message, file):
        return respond_all(
            message,
            file,
            chat1.chatbot.value,
            chat2.chatbot.value,
            chat3.chatbot.value,
            model_choices.value,
            system_message.value,
            max_tokens.value,
            temperature.value,
            top_p.value,
        )

    msg_input.submit(
        submit_message,
        [msg_input, file_input],
        [chat1.chatbot, chat2.chatbot, chat3.chatbot],
        api_name="submit"
    )

if __name__ == "__main__":
    # Hugging Face 토큰이 설정되어 있는지 확인
    if not HF_TOKEN:
        print("Warning: HF_TOKEN environment variable is not set")
    demo.launch()