File size: 13,003 Bytes
01f15df
 
f9b9d56
83ee74c
705c5b5
83ee74c
c22a5cd
 
f9b9d56
c22a5cd
01f15df
 
1fd4ab2
ad9db85
1fd4ab2
bee778b
ad9db85
 
c22a5cd
 
 
95ce689
c22a5cd
 
95ce689
 
 
72fb2d4
95ce689
 
 
c22a5cd
95ce689
c22a5cd
 
95ce689
d6d0bdd
95ce689
 
d6d0bdd
 
 
95ce689
 
c22a5cd
d6d0bdd
 
 
 
 
 
 
 
 
72fb2d4
7b27b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c22a5cd
 
 
 
bee778b
 
01f15df
bee778b
01f15df
f9b9d56
2af89cf
1fd4ab2
99d94e0
da20c1b
99d94e0
 
 
1fd4ab2
01f15df
da20c1b
01f15df
2af89cf
 
 
 
 
da20c1b
2af89cf
 
da20c1b
01f15df
da20c1b
 
 
01f15df
2af89cf
705c5b5
0997082
2af89cf
705c5b5
99d94e0
 
 
705c5b5
2af89cf
 
99d94e0
521288b
 
 
 
01f15df
 
 
 
 
 
521288b
 
 
 
01f15df
521288b
01f15df
521288b
 
 
01f15df
705c5b5
521288b
 
 
 
 
 
 
 
01f15df
705c5b5
01f15df
0997082
bee778b
95ce689
 
 
18d99cc
5bb381c
 
 
 
 
 
 
 
 
 
 
 
18d99cc
 
705c5b5
95ce689
252a7fb
95ce689
 
 
 
 
 
 
 
2ff143a
95ce689
 
 
 
 
 
 
2ff143a
 
 
 
 
 
 
252a7fb
95ce689
 
 
 
d6d0bdd
 
 
95ce689
 
2ff143a
252a7fb
2ff143a
 
 
d6d0bdd
 
 
 
 
 
 
2ff143a
 
 
d6d0bdd
2ff143a
95ce689
d6d0bdd
95ce689
c22a5cd
2ff143a
 
95ce689
d6d0bdd
2ff143a
95ce689
 
 
63c5e29
 
b45e256
d6d0bdd
b45e256
4fec5a3
72fb2d4
d6d0bdd
 
72fb2d4
7ffca43
4fec5a3
7ffca43
4fec5a3
7ffca43
 
b45e256
4fec5a3
 
63c5e29
 
7d860cd
7ffca43
4fec5a3
99d94e0
d57197f
7ffca43
63c5e29
4fec5a3
 
 
 
 
63c5e29
01f15df
63c5e29
 
5a41d75
 
 
 
 
63c5e29
 
 
f9b9d56
c22a5cd
 
 
 
 
01f15df
 
 
 
 
 
 
 
 
 
 
 
 
c22a5cd
 
 
 
 
01f15df
 
 
 
 
 
 
 
 
 
f9b9d56
95ce689
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
from dotenv import load_dotenv
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
from typing import List, Tuple
import json
from datetime import datetime

# ν™˜κ²½ λ³€μˆ˜ μ„€μ •
HF_TOKEN = os.getenv("HF_TOKEN")

# LLM Models Definition
LLM_MODELS = {
    "Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024",  # Default
    "Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct"    # Backup model
}

class ChatHistory:
    def __init__(self):
        self.history = []
        self.history_file = "/tmp/chat_history.json"
        self.load_history()

    def add_conversation(self, user_msg: str, assistant_msg: str):
        conversation = {
            "timestamp": datetime.now().isoformat(),
            "messages": [
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": assistant_msg}
            ]
        }
        self.history.append(conversation)
        self.save_history()

    def format_for_display(self):
        # Gradio Chatbot μ»΄ν¬λ„ŒνŠΈμ— λ§žλŠ” ν˜•μ‹μœΌλ‘œ λ³€ν™˜
        formatted = []
        for conv in self.history:
            formatted.append([
                conv["messages"][0]["content"],  # user message
                conv["messages"][1]["content"]   # assistant message
            ])
        return formatted

    def get_messages_for_api(self):
        # API ν˜ΈμΆœμ„ μœ„ν•œ λ©”μ‹œμ§€ ν˜•μ‹
        messages = []
        for conv in self.history:
            messages.extend([
                {"role": "user", "content": conv["messages"][0]["content"]},
                {"role": "assistant", "content": conv["messages"][1]["content"]}
            ])
        return messages

    def clear_history(self):
        self.history = []
        self.save_history()

    def save_history(self):
        try:
            with open(self.history_file, 'w', encoding='utf-8') as f:
                json.dump(self.history, f, ensure_ascii=False, indent=2)
        except Exception as e:
            print(f"νžˆμŠ€ν† λ¦¬ μ €μž₯ μ‹€νŒ¨: {e}")

    def load_history(self):
        try:
            if os.path.exists(self.history_file):
                with open(self.history_file, 'r', encoding='utf-8') as f:
                    self.history = json.load(f)
        except Exception as e:
            print(f"νžˆμŠ€ν† λ¦¬ λ‘œλ“œ μ‹€νŒ¨: {e}")
            self.history = []


# μ „μ—­ ChatHistory μΈμŠ€ν„΄μŠ€ 생성
chat_history = ChatHistory()

def get_client(model_name="Cohere c4ai-crp-08-2024"):
    try:
        return InferenceClient(LLM_MODELS[model_name], token=HF_TOKEN)
    except Exception:
        return InferenceClient(LLM_MODELS["Meta Llama3.3-70B"], token=HF_TOKEN)

def analyze_file_content(content, file_type):
    """Analyze file content and return structural summary"""
    if file_type in ['parquet', 'csv']:
        try:
            lines = content.split('\n')
            header = lines[0]
            columns = header.count('|') - 1
            rows = len(lines) - 3
            return f"πŸ“Š 데이터셋 ꡬ쑰: {columns}개 컬럼, {rows}개 데이터"
        except:
            return "❌ 데이터셋 ꡬ쑰 뢄석 μ‹€νŒ¨"
    
    lines = content.split('\n')
    total_lines = len(lines)
    non_empty_lines = len([line for line in lines if line.strip()])
    
    if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
        functions = len([line for line in lines if 'def ' in line])
        classes = len([line for line in lines if 'class ' in line])
        imports = len([line for line in lines if 'import ' in line or 'from ' in line])
        return f"πŸ’» μ½”λ“œ ꡬ쑰: {total_lines}쀄 (ν•¨μˆ˜: {functions}, 클래슀: {classes}, μž„ν¬νŠΈ: {imports})"
    
    paragraphs = content.count('\n\n') + 1
    words = len(content.split())
    return f"πŸ“ λ¬Έμ„œ ꡬ쑰: {total_lines}쀄, {paragraphs}단락, μ•½ {words}단어"

def read_uploaded_file(file):
    if file is None:
        return "", ""
    try:
        file_ext = os.path.splitext(file.name)[1].lower()
        
        if file_ext == '.parquet':
            df = pd.read_parquet(file.name, engine='pyarrow')
            content = df.head(10).to_markdown(index=False)
            return content, "parquet"
        elif file_ext == '.csv':
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    df = pd.read_csv(file.name, encoding=encoding)
                    content = f"πŸ“Š 데이터 미리보기:\n{df.head(10).to_markdown(index=False)}\n\n"
                    content += f"\nπŸ“ˆ 데이터 정보:\n"
                    content += f"- 전체 ν–‰ 수: {len(df)}\n"
                    content += f"- 전체 μ—΄ 수: {len(df.columns)}\n"
                    content += f"- 컬럼 λͺ©λ‘: {', '.join(df.columns)}\n"
                    content += f"\nπŸ“‹ 컬럼 데이터 νƒ€μž…:\n"
                    for col, dtype in df.dtypes.items():
                        content += f"- {col}: {dtype}\n"
                    null_counts = df.isnull().sum()
                    if null_counts.any():
                        content += f"\n⚠️ 결츑치:\n"
                        for col, null_count in null_counts[null_counts > 0].items():
                            content += f"- {col}: {null_count}개 λˆ„λ½\n"
                    return content, "csv"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"❌ μ§€μ›λ˜λŠ” μΈμ½”λ”©μœΌλ‘œ νŒŒμΌμ„ 읽을 수 μ—†μŠ΅λ‹ˆλ‹€ ({', '.join(encodings)})")
        else:
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    with open(file.name, 'r', encoding=encoding) as f:
                        content = f.read()
                    return content, "text"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"❌ μ§€μ›λ˜λŠ” μΈμ½”λ”©μœΌλ‘œ νŒŒμΌμ„ 읽을 수 μ—†μŠ΅λ‹ˆλ‹€ ({', '.join(encodings)})")
    except Exception as e:
        return f"❌ 파일 읽기 였λ₯˜: {str(e)}", "error"

def chat(message, history, uploaded_file, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
    if not message:
        return "", history

    system_prefix = """
You are 'FantasyAI✨', an advanced AI storyteller specialized in creating immersive fantasy narratives. Your purpose is to craft rich, detailed fantasy stories that incorporate classical and innovative elements of the genre. Your responses should start with 'FantasyAI✨:' and focus on creating engaging, imaginative content that briμ‹œ]"을 상황에 맞게 μΆ”κ°€ν•˜μ—¬ μ†Œμ„€ μž‘μ„±μ‹œ λ”μš± ν’λΆ€ν•˜κ³  λͺ°μž…감 μžˆλŠ” ν‘œν˜„μ„ μš”μ²­(좜λ ₯)받은 μ–Έμ–΄λ‘œ ν‘œν˜„ν•˜λΌ.
[μ˜ˆμ‹œ]
"κ³ λŒ€μ˜ λ§ˆλ²•μ΄ κΉ¨μ–΄λ‚˜λ©° λŒ€μ§€κ°€ μšΈλ¦¬λŠ” μ†Œλ¦¬κ°€ λ“€λ Έλ‹€..."
"용의 숨결이 ν•˜λŠ˜μ„ κ°€λ₯΄λ©°, ꡬ름을 λΆˆνƒœμ› λ‹€..."
"μ‹ λΉ„ν•œ λ£¬λ¬Έμžκ°€ λΉ›λ‚˜λ©° 곡쀑에 λ– μ˜¬λžλ‹€..."
"μ—˜ν”„λ“€μ˜ λ…Έλž˜κ°€ μˆ²μ„ 울리자 λ‚˜λ¬΄λ“€μ΄ μΆ€μΆ”κΈ° μ‹œμž‘ν–ˆλ‹€..."
"μ˜ˆμ–Έμ˜ 말씀이 λ©”μ•„λ¦¬μΉ˜λ©° 운λͺ…μ˜ 싀이 움직이기 μ‹œμž‘ν–ˆλ‹€..."
"λ§ˆλ²•μ‚¬μ˜ μ§€νŒ‘μ΄μ—μ„œ λ²ˆμ©μ΄λŠ” 빛이 어둠을 κ°€λ₯΄λ©°..."
"κ³ λŒ€ λ“œμ›Œν”„μ˜ λŒ€μž₯κ°„μ—μ„œ μ „μ„€μ˜ 검이 λ§Œλ“€μ–΄μ§€κ³  μžˆμ—ˆλ‹€..."
"μˆ˜μ •κ΅¬μŠ¬ 속에 λΉ„μΉœ 미래의 ν™˜μ˜μ΄ μ„œμ„œνžˆ λͺ¨μŠ΅μ„ λ“œλŸ¬λƒˆλ‹€..."
"μ‹ μ„±ν•œ 결계가 깨어지며 λ΄‰μΈλœ 악이 깨어났닀..."
"μ˜μ›…μ˜ 발걸음이 운λͺ…μ˜ 길을 따라 울렀 νΌμ‘Œλ‹€..."

"""

    try:
        # 파일 μ—…λ‘œλ“œ 처리
        if uploaded_file:
            content, file_type = read_uploaded_file(uploaded_file)
            if file_type == "error":
                error_message = content
                chat_history.add_conversation(message, error_message)
                return "", history + [[message, error_message]]
            
            file_summary = analyze_file_content(content, file_type)
            
            if file_type in ['parquet', 'csv']:
                system_message += f"\n\n파일 λ‚΄μš©:\n```markdown\n{content}\n```"
            else:
                system_message += f"\n\n파일 λ‚΄μš©:\n```\n{content}\n```"
                
            if message == "파일 뢄석을 μ‹œμž‘ν•©λ‹ˆλ‹€...":
                message = f"""[파일 ꡬ쑰 뢄석] {file_summary}
λ‹€μŒ κ΄€μ μ—μ„œ 도움을 λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€:
1. πŸ“‹ μ „λ°˜μ μΈ λ‚΄μš© νŒŒμ•…
2. πŸ’‘ μ£Όμš” νŠΉμ§• μ„€λͺ…
3. 🎯 μ‹€μš©μ μΈ ν™œμš© λ°©μ•ˆ
4. ✨ κ°œμ„  μ œμ•ˆ
5. πŸ’¬ μΆ”κ°€ μ§ˆλ¬Έμ΄λ‚˜ ν•„μš”ν•œ μ„€λͺ…"""

        # λ©”μ‹œμ§€ 처리
        messages = [{"role": "system", "content": system_prefix + system_message}]
        
        # 이전 λŒ€ν™” νžˆμŠ€ν† λ¦¬ μΆ”κ°€
        if history:
            for user_msg, assistant_msg in history:
                messages.append({"role": "user", "content": user_msg})
                messages.append({"role": "assistant", "content": assistant_msg})
        
        messages.append({"role": "user", "content": message})

        # API 호좜 및 응닡 처리
        client = get_client()
        partial_message = ""
        
        for msg in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = msg.choices[0].delta.get('content', None)
            if token:
                partial_message += token
                current_history = history + [[message, partial_message]]
                yield "", current_history

        # μ™„μ„±λœ λŒ€ν™” μ €μž₯
        chat_history.add_conversation(message, partial_message)
        
    except Exception as e:
        error_msg = f"❌ 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
        chat_history.add_conversation(message, error_msg)
        yield "", history + [[message, error_msg]]

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", title="GiniGEN πŸ€–") as demo:
    # κΈ°μ‘΄ νžˆμŠ€ν† λ¦¬ λ‘œλ“œ
    initial_history = chat_history.format_for_display()
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                value=initial_history,  # μ €μž₯된 νžˆμŠ€ν† λ¦¬λ‘œ μ΄ˆκΈ°ν™”
                height=600, 
                label="λŒ€ν™”μ°½ πŸ’¬",
                show_label=True
            )    


            msg = gr.Textbox(
                label="λ©”μ‹œμ§€ μž…λ ₯",
                show_label=False,
                placeholder="무엇이든 λ¬Όμ–΄λ³΄μ„Έμš”... πŸ’­",
                container=False
            )
            with gr.Row():
                clear = gr.ClearButton([msg, chatbot], value="λŒ€ν™”λ‚΄μš© μ§€μš°κΈ°")
                send = gr.Button("보내기 πŸ“€")
        
        with gr.Column(scale=1):
            gr.Markdown("### GiniGEN πŸ€– [파일 μ—…λ‘œλ“œ] πŸ“\n지원 ν˜•μ‹: ν…μŠ€νŠΈ, μ½”λ“œ, CSV, Parquet 파일")
            file_upload = gr.File(
                label="파일 선택",
                file_types=["text", ".csv", ".parquet"],
                type="filepath"
            )
            
            with gr.Accordion("κ³ κΈ‰ μ„€μ • βš™οΈ", open=False):
                system_message = gr.Textbox(label="μ‹œμŠ€ν…œ λ©”μ‹œμ§€ πŸ“", value="")
                max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅œλŒ€ 토큰 수 πŸ“Š")
                temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ°½μ˜μ„± μˆ˜μ€€ 🌑️")
                top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="응닡 λ‹€μ–‘μ„± πŸ“ˆ")

    # μ˜ˆμ‹œ 질문
    gr.Examples(
        examples=[
            ["ν₯미둜운 μ†Œμž¬ 10가지λ₯Ό μ œμ‹œν•΄μ€˜μš” 🀝"],
            ["λ”μš± 자극적이고 λ¬˜μ‚¬λ₯Ό μžμ„Ένžˆν•΄μ€˜μš” πŸ“š"],
            ["μ‘°μ„ μ‹œλŒ€ 배경으둜 ν•΄μ€˜μš” 🎯"],
            ["금기된 μš•λ§μ„ μ•Œλ €μ€˜μš” ✨"],
            ["계속 μ΄μ–΄μ„œ μž‘μ„±ν•΄μ€˜ πŸ€”"],
        ],
        inputs=msg,
    )

    # λŒ€ν™”λ‚΄μš© μ§€μš°κΈ° λ²„νŠΌμ— νžˆμŠ€ν† λ¦¬ μ΄ˆκΈ°ν™” κΈ°λŠ₯ μΆ”κ°€
    def clear_chat():
        chat_history.clear_history()
        return None, None

    # 이벀트 바인딩
    msg.submit(
        chat,
        inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
        outputs=[msg, chatbot]
    )

    send.click(
        chat,
        inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
        outputs=[msg, chatbot]
    )

    clear.click(
        clear_chat,
        outputs=[msg, chatbot]
    )

    # 파일 μ—…λ‘œλ“œμ‹œ μžλ™ 뢄석
    file_upload.change(
        lambda: "파일 뢄석을 μ‹œμž‘ν•©λ‹ˆλ‹€...",
        outputs=msg
    ).then(
        chat,
        inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p],
        outputs=[msg, chatbot]
    )

if __name__ == "__main__":
    demo.launch()