StoryStar / app.py
openfree's picture
Update app.py
574f73e verified
raw
history blame
6.35 kB
import gradio as gr
from transformers import pipeline
import os
from typing import List, Tuple, Generator
import concurrent.futures
# Hugging Face 토큰 설정
os.environ["TOKENIZERS_PARALLELISM"] = "false" # 경고 메시지 방지
HF_TOKEN = os.getenv("HF_TOKEN")
# Available LLM models
LLM_MODELS = {
"Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
"QwQ-32B": "Qwen/QwQ-32B-Preview",
"C4AI-Command": "CohereForAI/c4ai-command-r-plus-08-2024",
"Marco-o1": "AIDC-AI/Marco-o1",
"Qwen2.5": "Qwen/Qwen2.5-72B-Instruct",
"Mistral-Nemo": "mistralai/Mistral-Nemo-Instruct-2407",
"Nemotron-70B": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
}
# Default selected models
DEFAULT_MODELS = [
"meta-llama/Llama-3.3-70B-Instruct",
"CohereForAI/c4ai-command-r-plus-08-2024",
"mistralai/Mistral-Nemo-Instruct-2407"
]
# Pipeline 초기화
pipes = {}
for model_name in LLM_MODELS.values():
try:
pipes[model_name] = pipeline(
"text-generation",
model=model_name,
token=HF_TOKEN,
device_map="auto"
)
except Exception as e:
print(f"Failed to load model {model_name}: {str(e)}")
def process_file(file) -> str:
if file is None:
return ""
if file.name.endswith(('.txt', '.md')):
return file.read().decode('utf-8')
return f"Uploaded file: {file.name}"
def format_messages(message: str, history: List[Tuple[str, str]], system_message: str) -> List[dict]:
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
return messages
def generate_response(
pipe,
messages: List[dict],
max_tokens: int,
temperature: float,
top_p: float
) -> Generator[str, None, None]:
try:
formatted_prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
response = pipe(
formatted_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=50256,
num_return_sequences=1,
streaming=True
)
generated_text = ""
for output in response:
new_text = output[0]['generated_text'][len(formatted_prompt):].strip()
generated_text = new_text
yield generated_text
except Exception as e:
yield f"Error: {str(e)}"
def respond_all(
message: str,
file,
history1: List[Tuple[str, str]],
history2: List[Tuple[str, str]],
history3: List[Tuple[str, str]],
selected_models: List[str],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[Generator[str, None, None], Generator[str, None, None], Generator[str, None, None]]:
if file:
file_content = process_file(file)
message = f"{message}\n\nFile content:\n{file_content}"
while len(selected_models) < 3:
selected_models.append(selected_models[-1])
def generate(pipe, history):
messages = format_messages(message, history, system_message)
return generate_response(pipe, messages, max_tokens, temperature, top_p)
return (
generate(pipes[selected_models[0]], history1),
generate(pipes[selected_models[1]], history2),
generate(pipes[selected_models[2]], history3),
)
with gr.Blocks() as demo:
with gr.Row():
model_choices = gr.Checkboxgroup(
choices=list(LLM_MODELS.values()),
value=DEFAULT_MODELS,
label="Select Models (Choose up to 3)",
interactive=True
)
with gr.Row():
with gr.Column():
chat1 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 1"),
textbox=False,
)
with gr.Column():
chat2 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 2"),
textbox=False,
)
with gr.Column():
chat3 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 3"),
textbox=False,
)
with gr.Row():
with gr.Column():
system_message = gr.Textbox(
value="You are a friendly Chatbot.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
with gr.Row():
file_input = gr.File(label="Upload File (optional)")
msg_input = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False
)
def submit_message(message, file):
return respond_all(
message,
file,
chat1.chatbot.value,
chat2.chatbot.value,
chat3.chatbot.value,
model_choices.value,
system_message.value,
max_tokens.value,
temperature.value,
top_p.value,
)
msg_input.submit(
submit_message,
[msg_input, file_input],
[chat1.chatbot, chat2.chatbot, chat3.chatbot],
api_name="submit"
)
if __name__ == "__main__":
# Hugging Face 토큰이 설정되어 있는지 확인
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable is not set")
demo.launch()