Spaces:
Running
Running
File size: 4,535 Bytes
c8763bd 134a499 ab5f5f1 76b423c 5345cba 76b423c 0f1bf97 c8763bd 76b423c efc3d5b 76b423c b3a1bf0 c8763bd 6f3a090 ab5f5f1 76b423c ab5f5f1 76b423c ab5f5f1 4b40065 76b423c 7b3f1e6 76b423c 2460b35 ab5f5f1 0232cf1 a8a6326 0232cf1 ab5f5f1 76b423c d19e350 a8a6326 0232cf1 a8a6326 0232cf1 a8a6326 d19e350 a8a6326 ab5f5f1 d19e350 ab5f5f1 d19e350 134a499 d19e350 ab5f5f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
from src.assets import custom_css
# from src.attention import create_attn_plots
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
from src.leaderboard import create_leaderboard_table
from src.llm_perf import get_llm_perf_df
from src.map import create_lat_score_mem_plot
from src.panel import (
create_control_callback,
create_control_panel,
create_select_callback,
)
# from custom_kernels import create_quant_krnl_plots
MACHINE_TO_HARDWARE = {
"1xA10": "A10-24GB-150W π₯οΈ",
"1xA100": "A100-80GB-275W π₯οΈ",
# "1xH100": "H100-80GB-700W π₯οΈ",
}
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(LOGO, elem_classes="logo")
gr.HTML(TITLE, elem_classes="title")
####################### HARDWARE TABS #######################
with gr.Tabs(elem_classes="tabs"):
for id, (machine, hardware) in enumerate(MACHINE_TO_HARDWARE.items()):
with gr.TabItem(hardware, id=id):
####################### CONTROL PANEL #######################
(
filter_button,
machine_textbox,
score_slider,
memory_slider,
backend_checkboxes,
datatype_checkboxes,
optimization_checkboxes,
quantization_checkboxes,
) = create_control_panel(machine=machine)
####################### HARDWARE SUBTABS #######################
with gr.Tabs(elem_classes="subtabs"):
open_llm_perf_df = get_llm_perf_df(machine=machine)
####################### LEADERBOARD TAB #######################
with gr.TabItem("Leaderboard π
", id=0):
search_bar, columns_checkboxes, leaderboard_table = (
create_leaderboard_table(open_llm_perf_df)
)
with gr.TabItem("Find Your Best Model π§", id=1):
lat_score_mem_plot = create_lat_score_mem_plot(open_llm_perf_df)
###################### ATTENTIONS SPEEDUP TAB #######################
# with gr.TabItem("Attention π", id=2):
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
# open_llm_perf_df
# )
# ####################### KERNELS SPEEDUP TAB #######################
# with gr.TabItem("Kernels π", id=4):
# quant_krnl_prefill_plot, quant_krnl_decode_plot = (
# create_quant_krnl_plots(llm_perf_df)
# )
####################### CONTROL CALLBACK #######################
create_control_callback(
filter_button,
# inputs
machine_textbox,
score_slider,
memory_slider,
backend_checkboxes,
datatype_checkboxes,
optimization_checkboxes,
quantization_checkboxes,
# interactive
columns_checkboxes,
search_bar,
# outputs
leaderboard_table,
lat_score_mem_plot,
# attn_prefill_plot,
# attn_decode_plot,
# quant_krnl_prefill_plot,
# quant_krnl_decode_plot,
)
create_select_callback(
# inputs
machine_textbox,
# interactive
columns_checkboxes,
search_bar,
# outputs
leaderboard_table,
)
####################### ABOUT TAB #######################
with gr.TabItem("About π", id=3):
gr.Markdown(ABOUT, elem_classes="descriptive-text")
####################### CITATION
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == "__main__":
# Launch demo
demo.queue().launch()
|