Spaces:
Running
Running
BenchmarkBot
commited on
Commit
β’
d262fb3
1
Parent(s):
d8b9ce2
made models clickable
Browse files- app.py +28 -45
- src/assets/text_content.py +2 -0
- src/utils.py +62 -0
app.py
CHANGED
@@ -1,69 +1,48 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
-
from huggingface_hub import HfApi, Repository
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
8 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
|
|
9 |
|
10 |
-
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
11 |
|
12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
13 |
-
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
|
|
14 |
|
|
|
15 |
|
16 |
-
def restart_space():
|
17 |
-
HfApi().restart_space(
|
18 |
-
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
19 |
-
)
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
if OPTIMUM_TOKEN:
|
25 |
-
print("Loading LLM-Perf-Dataset from Hub...")
|
26 |
-
llm_perf_repo = Repository(
|
27 |
-
local_dir="./llm-perf/",
|
28 |
-
clone_from=LLM_PERF_DATASET_REPO,
|
29 |
-
token=OPTIMUM_TOKEN,
|
30 |
-
repo_type="dataset",
|
31 |
-
)
|
32 |
-
llm_perf_repo.git_pull()
|
33 |
|
34 |
-
return llm_perf_repo
|
35 |
-
|
36 |
-
|
37 |
-
def get_leaderboard_df():
|
38 |
-
if llm_perf_repo:
|
39 |
-
llm_perf_repo.git_pull()
|
40 |
-
|
41 |
-
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
42 |
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
43 |
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
44 |
|
|
|
|
|
45 |
df.rename(columns={
|
46 |
"model": "Model",
|
47 |
-
"backend.name": "Backend",
|
48 |
-
"backend.torch_dtype": "
|
49 |
-
"backend.quantization": "Quantization",
|
50 |
-
"generate.latency(s)": "Latency (s)",
|
51 |
-
"generate.throughput(tokens/s)": "Throughput (tokens/s)"
|
52 |
}, inplace=True)
|
53 |
|
54 |
-
df.sort_values(by=["Throughput (tokens/s)"],
|
|
|
55 |
|
56 |
return df
|
57 |
|
58 |
|
59 |
-
|
60 |
-
leaderboard_df = get_leaderboard_df()
|
61 |
-
|
62 |
-
return leaderboard_df
|
63 |
-
|
64 |
-
|
65 |
-
llm_perf_repo = load_dataset_repo()
|
66 |
-
|
67 |
demo = gr.Blocks(css=custom_css)
|
68 |
with demo:
|
69 |
gr.HTML(TITLE)
|
@@ -71,15 +50,19 @@ with demo:
|
|
71 |
|
72 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
73 |
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
74 |
-
|
|
|
75 |
leaderboard_table_lite = gr.components.Dataframe(
|
76 |
-
value=
|
77 |
-
headers=
|
78 |
-
|
79 |
-
elem_id="leaderboard-table-lite",
|
80 |
)
|
81 |
|
|
|
|
|
82 |
scheduler = BackgroundScheduler()
|
83 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
84 |
scheduler.start()
|
|
|
|
|
85 |
demo.queue(concurrency_count=40).launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
|
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
|
6 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
7 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model
|
9 |
|
|
|
10 |
|
11 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
12 |
+
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
13 |
+
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
14 |
|
15 |
+
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def get_vanilla_benchmark_df():
|
19 |
+
if llm_perf_dataset_repo:
|
20 |
+
llm_perf_dataset_repo.git_pull()
|
21 |
|
22 |
+
df = pd.read_csv(
|
23 |
+
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
26 |
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
27 |
|
28 |
+
df["model"] = df["model"].apply(make_clickable_model)
|
29 |
+
|
30 |
df.rename(columns={
|
31 |
"model": "Model",
|
32 |
+
"backend.name": "Backend π",
|
33 |
+
"backend.torch_dtype": "Load dtype",
|
34 |
+
"backend.quantization": "Quantization ποΈ",
|
35 |
+
"generate.latency(s)": "Latency (s) β¬οΈ",
|
36 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
37 |
}, inplace=True)
|
38 |
|
39 |
+
df.sort_values(by=["Throughput (tokens/s) β¬οΈ"],
|
40 |
+
ascending=False, inplace=True)
|
41 |
|
42 |
return df
|
43 |
|
44 |
|
45 |
+
# Define demo interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
demo = gr.Blocks(css=custom_css)
|
47 |
with demo:
|
48 |
gr.HTML(TITLE)
|
|
|
50 |
|
51 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
52 |
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
53 |
+
|
54 |
+
vanilla_benchmark_df = get_vanilla_benchmark_df()
|
55 |
leaderboard_table_lite = gr.components.Dataframe(
|
56 |
+
value=vanilla_benchmark_df,
|
57 |
+
headers=vanilla_benchmark_df.columns.tolist(),
|
58 |
+
elem_id="vanilla-benchmark",
|
|
|
59 |
)
|
60 |
|
61 |
+
|
62 |
+
# Restart space every hour
|
63 |
scheduler = BackgroundScheduler()
|
64 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
65 |
scheduler.start()
|
66 |
+
|
67 |
+
# Launch demo
|
68 |
demo.queue(concurrency_count=40).launch()
|
src/assets/text_content.py
CHANGED
@@ -2,4 +2,6 @@ TITLE = """<h1 align="center" id="space-title">π€ Open LLM-Perf Leaderboard</h
|
|
2 |
|
3 |
INTRODUCTION_TEXT = f"""
|
4 |
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
|
|
|
|
5 |
"""
|
|
|
2 |
|
3 |
INTRODUCTION_TEXT = f"""
|
4 |
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
5 |
+
|
6 |
+
π€ Anyone from the community can submit a model for automated benchmarking on the π€ GPU cluster, as long as it is a π€ Transformers model with weights on the Hub. We also support benchmarks of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
7 |
"""
|
src/utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, Repository
|
2 |
+
|
3 |
+
|
4 |
+
def restart_space(LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN):
|
5 |
+
HfApi().restart_space(
|
6 |
+
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
def load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN):
|
11 |
+
llm_perf_repo = None
|
12 |
+
if OPTIMUM_TOKEN:
|
13 |
+
print("Loading LLM-Perf-Dataset from Hub...")
|
14 |
+
llm_perf_repo = Repository(
|
15 |
+
local_dir="./llm-perf/",
|
16 |
+
clone_from=LLM_PERF_DATASET_REPO,
|
17 |
+
token=OPTIMUM_TOKEN,
|
18 |
+
repo_type="dataset",
|
19 |
+
)
|
20 |
+
llm_perf_repo.git_pull()
|
21 |
+
|
22 |
+
return llm_perf_repo
|
23 |
+
|
24 |
+
|
25 |
+
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b",
|
26 |
+
"huggingface/llama-30b", "huggingface/llama-65b"]
|
27 |
+
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
28 |
+
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
29 |
+
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
30 |
+
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
31 |
+
MODEL_PAGE = "https://huggingface.co/models"
|
32 |
+
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
33 |
+
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
34 |
+
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
35 |
+
|
36 |
+
|
37 |
+
def model_hyperlink(link, model_name):
|
38 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
39 |
+
|
40 |
+
|
41 |
+
def make_clickable_model(model_name):
|
42 |
+
link = f"https://huggingface.co/{model_name}"
|
43 |
+
|
44 |
+
if model_name in LLAMAS:
|
45 |
+
link = LLAMA_LINK
|
46 |
+
model_name = model_name.split("/")[1]
|
47 |
+
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
48 |
+
link = VICUNA_LINK
|
49 |
+
model_name = "stable-vicuna-13b"
|
50 |
+
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
51 |
+
link = ALPACA_LINK
|
52 |
+
model_name = "alpaca-13b"
|
53 |
+
if model_name == "dolly-12b":
|
54 |
+
link = DOLLY_LINK
|
55 |
+
elif model_name == "vicuna-13b":
|
56 |
+
link = VICUNA_LINK
|
57 |
+
elif model_name == "koala-13b":
|
58 |
+
link = KOALA_LINK
|
59 |
+
elif model_name == "oasst-12b":
|
60 |
+
link = OASST_LINK
|
61 |
+
|
62 |
+
return model_hyperlink(link, model_name)
|